Scheme of Teaching

&

Detailed Syllabus

For

Master of Science

M.Sc. (Microbiology)

(Two Year Program)

(w.e.f. Academic Session 2021–22)

School of Basic & Applied Sciences Shobhit Institute of Engineering & Technology

(Deemed to-be University) NH-58, Modipuram, Meerut (U.P.) – 250110

Website: www.shobhituniversity.ac.in

Program Educational Objectives (PEOs):

PEO1. Explain relationships and apply appropriate terminology relating to the structure, metabolism, genetics, and ecology of prokaryotic microorganisms, eukaryotic microorganisms, and viruses.

PEO2. Explain interactions between opportunistic and pathogenic microorganisms and susceptible hosts in contacts that result in infection and/or disease and apply these interactions to disease symptoms.

PEO3. Explain nonspecific body defences and the immune responses and apply this understanding to the infectious disease process as well as the prevention and control of infectious diseases.

PEO4. Explain principles of physical and chemical methods used in the control of microorganisms and apply this understanding to the prevention and control of infectious diseases.

PEO5. Exhibit strong, independent learning, analytical and problem-solving skills with special emphasis on design, communication, and ability to work in teams.

Program Outcomes (POs):

PO 1.Students will be able to acquire, articulate, retain and apply specialized language and knowledge relevant to microbiology.

PO 2.Students will acquire and demonstrate competency in laboratory safety and in routine and specialized microbiological laboratory skills applicable to microbiological research or clinical methods, including accurately reporting observations and analysis.

PO 3.Students will communicate scientific concepts, experimental results and analytical arguments clearly and concisely, both verbally and in writing.

PO 4.Students will demonstrate engagement in the Microbiology discipline through involvement in research or internship activities, the Microbiology Student Association club (MSA) and outreach or mentoring activities specific to microbiology.

PO 5.Graduates will be able to decide and apply appropriate tools and techniques in microbial manipulation.

PO 6.Graduates will be able to justify societal, health, safety and legal issues and understand his responsibilities in microbiology practices

PO 7.Graduates will be able to understand the need and impact of biotechnological solutions on environment and societal context keeping in view need for sustainable solution.

PO 8.Use the techniques, skills, and modern engineering tools necessary for engineering practice.

PO 9.Design system, components or processes to meet realistic needs of society, environment, health and safety, and sustainability.

PO 10.Recognize the need for, and an ability to engage in life-long learning.

PO 11. Acquire knowledge of contemporary issues.

PO 12.Graduates will be able to demonstrate knowledge of project and finance management when dealing with Biotechnology Engineering problems.

Program Specific Outcomes (PSOs):

PSO 1. Demonstrate proficiency in basic science and foundation clinical courses.

PSO 2. Demonstrate a working knowledge of advanced microbial techniques and life science for the industrial applications and human welfare.

PSO 3.Demonstrate the application in microbial, biotechnology, and allied industries designing, developing and providing solutions for product/processes/technology development.

SCHEME OF TEACHING – M.Sc. (Microbiology) FIRST YEAR

Course Code	Course / Title	L	Τ	Р	Credit
MSMB-101	Biochemistry	3	0	0	3
MSMB -102	Microbial Diversity	3	0	0	3
MSMB -103	Biophysical Techniques	4	0	0	4
MSMB -104	Genetics	4	0	0	4
MSMB -105	Cell and Molecular Biology	4	0	0	4
MSMB -151	Biochemistry Lab.	0	0	4	2
MSMB -152	Microbial Diversity Lab.	0	0	4	2
MSMB -153	Biophysical Techniques Lab.	0	0	4	2
	Total	18	0	12	24

SEMESTER-I

SEMESTER –II

Course Code	Course / Title	L	Т	Р	Credit
MSMB-201	Genetic Engineering	4	0	0	4
MSMB-202	Immunotechnology	3	0	0	3
MSMB-203	Bioinformatics	3	0	0	3
MSMB -204	Microbial Physiology and Metabolism	4	0	0	4
MSMB-205/ MSMB-206/ MSMB-207	Elective-I	4	0	0	4
MSMB-251	Genetic Engineering Lab.	0	0	4	2
MSMB-252	Immunotechnology Lab.	0	0	4	2
MSMB-253	Bioinformatics Lab.	0	0	4	2
	Total	18	0	12	24

SECOND YEAR

SEMESTER-III

Course Code	Course / Title	L	Т	Р	Credit
MSMB-301	Industrial and Food Microbiology	4	0	0	4
MSMB-302	Biostatistics	3	0	0	3
MSMB-303	Medical Microbiology	4	0	0	4
MSMB-304	Intellectual Property Rights, Biosafety and Bioethics	3	0	0	3
MSMB-305/ MSMB-306/ MSMB-307	Elective -II	4	0	0	4
MSMB-351	Industrial and Food Microbiology Lab.	0	0	4	2
MSMB-353	Medical Microbiology Lab.	0	0	4	2
MSMB-381	Seminar	0	0	4	2
	Total	18	0	12	24

Semester- IV

Course Code	Course / Title	L	Τ	Р	Credit
MSMB-481	Seminar	0	0	04	2
MSMB-491	Dissertation	0	0	24	12
	Total	0	0	28	14

- Elective-I MSMB-205 Agriculture Microbiology MSMB-206 Virology MSMB-207 Microbial Technology Elective-II – MSMB-305Nanobiotechnology
- MSMB-306Environmental Microbiology MSMB-307Vaccines

SEMESTER-I

Course	MSMB-101								
code		Applied Sciences							
Category	App	Applied Sciences							
Course	Bioc	Biochemistry							
title Sahama	CD	т	Т	р					
Scheme	CK	L	1	P					
and Credita	3	3	0	0					
Dro									
requisites	Nil								
(if any)	1111								
(II ally)	771	1.		.1 •		C C			
	The	obje	ctivesof	thiscou	rsearetobuilduponundergraduatelevelknowled	geof			
	biochemical principles with								
Objectives	specificemphasisondifferentmetabolicpathways. The course shall make the								
	students awareof various disease pathologies within thecontextofeachtopic.								
	On c	omr	letion o	f this co	ourse studentsshouldbeableto:				
	1	Ga	in funda	mental	knowledgeinbiochemistry:				
	2) Un	derstand	themol	ecularbasis of various pathological				
Outcomes	2		nditions	from t	he perspective of his chemical reactions				
		5. CU	multions	nomit	ne perspectiveorbiochemicareactions.				
S. No.	Unit	det	ails			Time			
5.110.	Om	uci	ans			Allotted			
	Che	mica	al basis	s of	life: Miller-Urey experiment, abiotic				
	form	atio	n		of amino				
	acido	oligo	omers,co	mposit	ionoflivingmatter;Water-				
	prop	ertie	sofwate	r,essent	ialrole				
	ofwa	terf	orlifeone	earthpH	,buffer,maintenanceofbloodpHandpHofg				
Unit-1	astric	cjuic	e,pH op	otima o	f different enzymes (pepsin, trypsin and	8 Hrs			
	alkal	ine	phospha	itase),	ionizationand hydrophobicity, emergent				
	prop	ertie	es	of	biomolecules in water,				
	biom	nolec	cularhier	archy,n	nacromolecules, molecular assemblies.				
	Pro	teins	structure	e- Strue	cture-function relationships: amino acids -				
Unit-2	stru	ctur	e and f	unction	al groupproperties, peptides and covalent	8Hrs			
	structure of proteins, elucidation of primary and higher order								

	structures,Ramachandranplot,evolutionofproteinstructure,proteindegradationandintroductiontomolecularpathwayscontrollingproteindegradation,structure-function.								n						
Unit-3]] 	Enzyme Kinetics-Enzyme catalysis – general principles of catalysis; quantitation of enzyme activity and efficiency; enzyme characterization and Michaelis-Menten kinetics; relevance of enzymes in metabolic regulation, activation, inhibition and covalent modification; single substrate enzymes; concept of catalytic antibodies; catalytic strategies withspecificexamplesofproteases, carbonicanhydrases, restrictionen zymesandnucleosidemonophosphate kinase; regulatory strategies with specific example of hemoglobin; isozymes; roleof covalent modification in enzymaticactiv ity; zymogens.													
Unit-4	G m so an an p	Glycobiology-Sugars- mono,di,andpolysaccharideswithspecificreferencetoglycogen,amylo seand cellulose, glycosylation of other biomolecules - glycoproteins and glycolipids;lipids -structure andpropertiesofimportantmembersofstorageandmembranelipids;lipo 8 Hrs													
Unit-5	RoleofVitaminsandcofactors-Calvincycleandpentosephosphatepathway;glycogenmetabolism,reciprocalcontrolofglycogensynthesisandbreakdown, roles ofepinephrineandglucagon and insulininglycogenmetabolism; Fattyacidmetabolism;proteinturnoverandaminonucleotidebiosynthesis;biosynthesis ofmembranepilpidsandwithspecificemphasisoncholesterolmetabolismandmevalonatepathway.emphasisoncholesterolmetabolismandmevalonate														
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO 1 CO 2	2	1 2	$\frac{2}{2}$	3	$\frac{1}{2}$	1	1 2	$\frac{1}{2}$	$\frac{2}{2}$	2 3	2	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1 2
Average	5 2.0	1 1.3	2 2.0	1 2.0	<u> </u>	<u> </u>	- 1.3	1.3	5 2.3	2 2.3	1.3	<u> </u>	<u> </u>	<u> </u>	<u> </u>
References	1 2 3	Str Lel NY	yer,L. nninge ':Wor et, D.	(2015 er, A.I th. "&Voo).Bio L. (20 et,J.G	chemi 12).Pi .(2010	istry.(8 rincipl 6).Bioo	g th ed.) es ofB	New Y Sioche	York: emistr th ed.)	Freem y(6 th	nan. ed.). I oken,l	NewYo NJ: J.V	ork, Viley&	Sons.

	4.	Dobson, C.M. (2003). Protein Folding and Misfolding. Nature, 426 (6968),
		884-890.doi:10.1038/nature 02261.
	5.	Richards, F.M. (1991). The Protein Folding Problem. Scientific A
		merican,264(1),54-63.doi:10.1038/scientific American
		0191-54.
	6.	0191-54.

Course code	MSMB-102					
Category	Applied Sciences					
Course title	Microbial Diversity					
Scheme and	CR L T P					
Credits	3 3 0 0					
Pre-requisites (if any)	Nil					
Objectives	Theobjectivesofthiscoursearetobuildknowledgeof prokaryotic and eukaryotic diversity with specificemphasisonmechanisms behind it. The course shall make the students awareof various microbial communities and within thecontextofeachtopic.					
Outcomes	 a. Describe common groups of bacteria and archaea in different ecosystems, and their role in biogeochemical key processes in these environments. b. Describe for cultivation-independent methods for studies of the composition of microbial communities and for the function and occurrence of individual groups. c. Describe genomic-based methods to study microbial diversity in nature and for the mechanisms behind it. d. Describe important interactions within microbial communities and between microorganisms and plants and animals. e. Evaluate, synthesize and present scientific studies of genetic and functional microbial diversity in different ecosystems 					
S. No.	Unit details Time					
	Allotted					
Unit-1Archaea: Systematics, and occurrence, diversity, characteristic features, significance and potential6Hrs						

Unit-2	applications (eg. biochips, methane generation, ultrafiltation membranes, production of PHB and PHA, desulphurization of coal and crude oil, bioleaching of metals, enzymes, compatible solutes and others) of different groups of archaebacteria (Crenarchaeota, Euarchaeota, Korarchaeota, Nanoarchaeota).Bacteria: Conventional and molecular systematics, and general discussion on the occurrence, diversity, characteristic features, significance and potential6Hrs							
	applications of various groups of bacteria according to Bergey's Manual of Systematic Bacteriology.							
Unit-3	Fungal Systematics and diversity: Fungal endophytes of tropical plants and their applications: Endophytic fungi, colonization and adaptation of endophytes. Endophytes as latent pathogens and biocontrol agents. 							
Unit-4	Agriculturallyimportanttoxigenicfungi:Biodiversity, Chemical and biological characterization of toxic metabolites, toxigenic fungi in sustainable agriculture with special emphasis on biopesticides. Secondary metabolites from fungi: Terpenes, Non- ribosomal peptides, hydrophobins, peptaibols, indole alkaloids, detailed emphasis on polyketides.6Hrs							
Biodiversity of yeast and Algae: Mycocinogeny and diversity of mycogenic yeast strains, characteristics of mycocinogeny, important mycocins, applications of antagonistic yeasts. Biotechnological applications of yeasts. Algal diversity from morphology to molecules: Importance of algae in production of algal pigments, biofuels, hydrogen production. 6Hi								
P P O O 1 2	P P P P PO PS PS PS O 3 3 4 5 6 7 8 9 10 11 12 O 1 O 2 O 3							
CO 1 2 1 CO 2 2 2 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-						
CO 2 2 2 CO 3 1 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							

CO 4	1	2	2	1	-	2	1	1	1	1	-	2	1	1	2
CO 5	3	2	2	2	1	1	3	2	1	1	1	2	2	3	2
Average	1.8	2	2	1.6	1	1.6	1.4	1.8	1.6	1.6	1.4	2	1.4	1.8	1.8
			1.	1. The Prokaryotes. A handbook on the biology of bacteria:											
			ecophysiology, isolation, identification, applications. Volumes I-IV by												
			Bal	Balows, A., Trüper, H. G., Dworkin, M., Harder, W., Schleifer, K. H.											
Springer-Verlag, New York; 1992															
2. Bacterial Systematics, by Logan, A., Niall A. Logan,									gan, N	Wiley-					
blackwell: 1994										·		2			
			3.	Princ	iples	of I	Micro	biolos	gy by]	R.M.	Atlas.	Mos	by pu	blishe	rs, St.
			Loi	uis: 1	995	10		(,		J I		,
			4.	Brock Biology of Microorganisms (12th edition) by Madigan and											
			Ioh	John M Martinko Paul V Dunlan David P Clark Renjamin											
			Cu	Cummings: 2008											
Referenc	es		5 Microbiology: An Introduction by Gerard I Tortora, Berdell R Funke												
			Christing I. Case Benjamin, Cummings Publishing Company, 2008												
			6 Fundamentals of the fungi by Elizabeth Moore, Fourth edition												
			0. Fundamentals of the fungi by Elizabeth Moore, Fourth edition,												
				Mann	n Cu	nolo	.1gs, L		t status	ond	£.,,,,,,,		anaata	Edit	ad ha
			/.		Diech	1010g	gy: P	resen			Tutur	e pro	specis		
			Ma	hend	ra Ra	1. I.K	., Inte	ernati	onal Pu	blishi	ng Ho	use P	vt. Ltd	.; 200	/.
			8. 7	The Y	Yeast	Han	dbool	k: Bio	odiversi	ity and	l Eco	physic	ology	of yea	sts by
			Car	rlos A	A. Ro	osa a	nd Ga	abor l	Peter. S	pringe	er- Ve	erlag 1	Berlin	Heide	elberg;
			200)6.											
			9.	Algae	e: An	atom	y, Bio	ochen	nistry a	nd Bic	otechn	ology	by La	ura Ba	arsanti
			and	l Paol	lo Gu	altie	ri. Tay	ylor a	nd Fran	cis Gi	oup, l	LLC;	2006.		

Course code	MSMB-1	103					
Category	Applied Sciences Biophysical Techniques						
Course title							
Scheme and	CR	L	Т	Р			
Credits	4	4	0	0			
Pre-requisites (if any)	Nil						
Objectives	The object to differences measure sciences the utili biologics	ectives of entiate b ment of . The co ity of s al resear	of this co etween t parame urse is d et of e ch in a p	burse is t he variou eters use esigned t xperimer roblem-c	to teach students us techniques for ed in biological to teach students ntal methods in priented manner.		

	On completion of this course, students should be able to:
Outcomes	 a. Explain principles of electrophoresis and immunochemical techniques and discuss how these techniques can be used in molecular medicine. b. Explain basic principles for chromatographic separation techniques. c. To familiarize with basic Laboratory techniques and understand the principle of measurements using those techniques.

		-
S. No.	Unit details	Time Allotted
Unit-1	Electrophoresis&Blotting: Agarose and polyacrylamide gel electrophoresis (native and denaturing), Immuno-electrophoresis, Isoelectric Focusing, Capillary electrophoresis. Southern blotting, northern blotting, western blotting, South western blotting.	8Hrs
Unit-2	Chromatography:Plannerchromatographyandcolumnchromatography(ionexchange,gelpermeation, affinity), GLC and HPLC.	8 Hrs
Unit-3	SpectroscopyandX-raycrystallography:Principles of colorimetryandUV-Visspectrophotometry,Massspectrometry,MALDI,X-RayCrystallography,SPR.	8 Hrs
Unit-4	Microscopy -Principle, working, sample preparation and biological applications of different microscopes light microscope (bright field and dark field, phase contrast, polarization, differential interference contrast), electron microscope (TEM, SEM), fluorescence microscope (simple and confocal) and atomic force microscope.	9Hrs

Unit-5		PO <th>9Hr</th> <th>5</th>												9Hr	5
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS 01	PS	PS 03
CO 1	2	1	2	3	1	2	1	1	2	10	2	2	1	2	1
CO 2	3	3	2	1	1	-	1	3	1	2	2	-	1	2	2
CO 3	1	3	3	1	2	3	3	2	3	2	3	3	2	1	2
Averag															
e	2.0	2.3	2.3	1.7	1.3	1.7	1.7	2.0 Wil	2.0	1.7 K ond	$\frac{2.3}{1 \text{ Well}}$	1.7	1.3	1.7 Drin	1.7
Referen	ces						 2. 3. 4. 5. 6. 	and Can Will Sett anal USA Ran The Pub Cha Instr (5th Sko 200' Cen Upa Bioj Pub	Technoric Technoric Technoric Technoric Technoric Technology I and the second state of	chniqu ge Uni H.H., .A. 19 (7th V.S. 2 and P ons. G.R. ntal m D.A., H mstrum Learni ay, A. cal ch g Hou	es P versity Meritt 986. In eds.). 2006 a Practice . and hethods alaya F Holler, ental ing. . and emistr se.	ractica Press t, L.L. nstrum Wads und 07 e (2nd Ana s of c Publish F.J. a analys Upad y (4th	I Bio , Cami , Dean eental worth . Biot d eds nd, S chemic ing He and Ch sis. E hayay, eds.)	ochen bridge n, J.A metho Pub. echnia .). Ra S.K. cal an ouse. rouch, Brooks , K. . Him	 and of Co., ques–astogi 2008. alysis S.R. ZOOR 2008. alaya

Course code	MSN	MSMB -104									
Category	Appl	pplied Sciences									
Course title	Gene	etics									
Scheme and	CR	L	Т	P							
Credits	4	4	0	0							

Pre-requisites (if any)	Nil	
Objectives	The objectives of this course are to takestudents basics of genetics and classical genetics prokaryotic/phage genetics to yeast and highered domains. On all classical concepts of Mendelian genetics across the selife forms, students will be exposed to concept population genetics, qua genetics encompassing complex traits, clinical genetics and sofevolution.	through covering ukaryotic covering e- pts of antitative udgenetic
Outcomes	 Onsuccessfulcompletionofthiscourse, student will beat 1. Describe fundamental molecular principles of gen 2. Understand relationship between phenotype and genotype inhumangenetic 3. Describe the basics of genetic mapping; 4. Understand how gene expression is regulated. 	ole: netics; ctraits;
S. No.	Unit details	Time Allotte d
Unit-1	History of Genetics, Mitosis and Meiosis, Cell Cycle regulation, Mendel's laws of Inheritance, Codominance, Lethal Gene Linkage- types of linkage and estimation of linkage	8 Hrs
Unit-2	Ultrastructureofcellandcellorganellesandtheirfunctio ns, Cytoplasmic inheritance, Chromosome structure, morphology, number and types-karyotype and ideogram, Structure of chromosomal aberrations.	9Hrs
Unit-3	Mutations-Germinal and Somatic Mutations, Types of mutations, Molecular bases of mutation, Methods of inducing mutation and C/B technique, quantitative traits-qualitative traits and differences between them.	8Hrs
Unit-4	Multiple factor hypothesis, Alleles, Multiple alleles in Plants, Types of gene action	7 Hrs

Unit-5					Reg func oper	ulation tion, on and	n of ge types, d fine s	ene ex mode structu	press of 1 ore of	ion, D replicat gene: C	NA and ion an Classific	d its st d repa cation o	ructure ir, la of gene	e, c 8]	Hrs		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO 10	PO 11	PO 12	PS 0.1	PS	PS		
<u> </u>	1	<u>2</u>	3	4	5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
01	2	1	2	2	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
CO 2	2	2	2	1	1	1 - 1 - 1 2 2 1 2											
CO 3	2	2	2	-	2	3 3 2 3 2 2 3 2 1											
CO 4	1	3	3	1	2	2 3 3 2 3 2 3 3 2 1 2											
Averag																	
e	1.8	2.0	2.3	1.0	1.5	2.0	2.3	1.3	2.3	1.8	2.3	2.5	1.5	1.5	1.8		
Referen	ces				1. 2. 3.	Harth ysis. Pierc rk:W Tam Dub	l,D.L., Sudbu xe,B.A 7.H.Fre arin,R uque,I	&Jone ry,MA .(2005 eeman .H.,&I A:Wr	es,E.V A:Jon 5).Ger Leavit n.C.B	V.(199 esandl netics:a tt,R.W brown.	8).Gen Bartlet Conce .(1991) Smith,J	etics:P t. ptualA).Princi J.M.(19	rinciple pproac plesof 998). <i>E</i>	esand ch.Nev Genet <i>voluti</i>	Anal wYo ics. <i>onar</i>		
						yGer	netics.	Oxfor	d:Oxf	ordUn	iversity	Press	,				

Course code	MSMB -105												
Category	App	lied Sc	ciences										
Course title	Cell	and M	Iolecul	ar Biolog	5 9								
Scheme and	CR	L	Т	Р									
Credits	4	4	0	0									
Pre-requisites (if any)	Nil												
Objectives	The objectives of this course are tosensitize the students to the fact thataswegodownthescaleofmagnitudefromcellstoorganellestomo lecules,the understanding of various biologicalprocessesbecomesdeeperandinclusive.												
Outcomes	Stude aspec tosee	entsho cts in k;c)wl	uldbeec biolog hytosee	juippedto icalphenc k?	ounderstandthree fundamen omenon: a) what to seek; b) ho	ntal .ow							
S. No.	Unit	detail	S		,] (Ti m e							

		Al lot te
Unit-1	Cell organelles- Internal organization of the cell - cell membranes: structure of cell membranesand concepts related to compartmentalization in eukaryotic cells; intracellularorganelles: endoplasmic reticulum and Golgi apparatus, lysosomes and peroxisomes,ribosomes,cellularcytoskeleton,mitochondria, chloroplastsandcellenergetics;nuclearcompartment:nucleus ,nucleolusandchromosomes.	d 8 Hr s
Unit-2	Cellularsignalling,transportandtrafficking- Molecular mechanisms of membrane transport, nuclear transport, transport acrossmitochondriaandchloroplasts;intracellularvesiculartr affickingfromendoplasmicreticulumthroughGolgiapparatu stolysosomes/cellexterior.	8 Hr s
Unit-3	Cellular Processes- Cell cycle and its regulation; cell division: mitosis, meiosis and cytokinesis; celldifferentiation: stem cells, their differentiation into different cell types and organizationinto specialized tissues; cell-cell interactions; cell receptors and trans-membranesignalling;cellmotilityandmigration;celldeath:dif ferentmodesofcelldeathandtheirregulation.	9 Hr s
Unit-4	Manipulatingandstudyingcells-Isolationofcellsandbasicsofcellculture;observingcellsunderamicroscope,differenttypesofmicroscopy;analyzingandmanipulatingDNA,RNA	8 Hr s
Unit-5	Genome instability and cell transformation- Mutations,proto- oncogenes,oncogenesandtumoursuppressorgenes,physical,c hemicaland biological mutagens; types of mutations;transpositions- transposable genetic elements in prokaryotes and eukaryotes, role oftransposons in genome; viral and cellular oncogenes; tumor suppressor genes; structure,functionandmechanismofaction.	8 Hr s

	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	P O 9	PO 10	PO 11	PO 12	PS O 1	PS O 2	PS O 3
CO 1	2	1	2	2	1	2	2	1	2	1	2	2	1	2	1
Averag e	2	1	2	2	1	2	2	1	2	1	2	2	1	2	1
Referen	ces				 A (2) <li(2)< li=""> <li(2)< li=""> <li(2)< <="" th=""><th>lberts 2008). arland odish, ewYc rebs,J <i>in'sGe</i> ooper <i>ach(6</i> ardin, <i>ecker</i> <i>corldo</i> vatson k,CA</th><th>,B.,Joh Molect d Scier H. ork: W (E.,Le enesXI (G.M., (G.M., thEd.). J., Be ftheCe a,J.D.(2 :Benja</th><th>nnson, ular I nce. F.(.H. Fro win,B .Burli &Hau Wash ertoni, ell.Bo 2008). umin/C</th><th>A.,Le Biolog 2016) eeman .,Kilp ngtor Isman ingto G., K ston(<i>Moleo</i> Cumm</th><th>ewis,J., gy of 0. Ma n. oatrick, n,MA: n,M</th><th>Raff,N the Ce olecula S.T.,& Jones& 2013).7 M;Suno ith,L.</th><th>I.,Robe ell (5th Goldst zBartle ZBartle I.,&Be aminC oftheGe</th><th>erts,K., ⁿEd.). ellBiol ein,E.S ettLear l:aMol l. cker,W ummi ene(5th</th><th>&Wal New ogy(8¹ S.(201 rning. <i>lecular</i> /. M.(ngs. ¹d.).M</th><th>ter,P. York: ^hEd.). 4).<i>Le</i> <i>Appr</i> 2012). enloP</th></li(2)<></li(2)<></li(2)<>	lberts 2008). arland odish, ewYc rebs,J <i>in'sGe</i> ooper <i>ach(6</i> ardin, <i>ecker</i> <i>corldo</i> vatson k,CA	,B.,Joh Molect d Scier H. ork: W (E.,Le enesXI (G.M., (G.M., thEd.). J., Be ftheCe a,J.D.(2 :Benja	nnson, ular I nce. F.(.H. Fro win,B .Burli &Hau Wash ertoni, ell.Bo 2008). umin/C	A.,Le Biolog 2016) eeman .,Kilp ngtor Isman ingto G., K ston(<i>Moleo</i> Cumm	ewis,J., gy of 0. Ma n. oatrick, n,MA: n,M	Raff,N the Ce olecula S.T.,& Jones& 2013).7 M;Suno ith,L.	I.,Robe ell (5 th Goldst zBartle ZBartle I.,&Be aminC oftheGe	erts,K., ⁿ Ed.). ellBiol ein,E.S ettLear l:aMol l. cker,W ummi ene(5 th	&Wal New ogy(8 ¹ S.(201 rning. <i>lecular</i> /. M.(ngs. ¹ d.).M	ter,P. York: ^h Ed.). 4). <i>Le</i> <i>Appr</i> 2012). enloP

Course code	MSN	1SMB-151												
Category	Appl	Applied Sciences												
Course	Biool	Siochemistry Lab.												
title	DIOCI	nothennistry Lab.												
Scheme	CR	L	Т	P										
and	2	0	0	4										
Credits														
Pre-														
requisites	Nil													
(if any)														
Objectives	Theo emis ofex	objective stry.Thec periment	ofthislabo ourseisde almethod	oratoryc signedto lsinbiocl	ourseistoint o teach nemistryina	troducestud students problemori	entstoe the entedm	experimen utility nanner.	tsinbioch of set					
Outcomes	On c 1. 2.	completic Toelab To	on of this oratecond	course, ceptsofb familiar	studentssho iochemistry ize	ouldbeableto witheasyto with	o: runexp	eriments; basic	2					

laboratoryinstrumentsandunderstandandtheprinciple measurements

of

usingthoseinstrumentswithexperimentsinbiochemistry.

	P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	P O 9	PO 10	PO 11	PO 12	PS O 1	PS O 2	PS O 3
CO 1	2	1	2	1	1	2	1	1	2	1	2	3	1	2	1
CO 2	3	2	2	1	1	1	1	-	-	2	2	2	2	2	2
Average	2.5	1.5	2	1	1	1.5	1	0.5	1	1.5	2	2.5	1.5	2	1.5
Experime	nt de	tails													

- 1. Preparingvariousstocksolutionsandworkingsolutionsthatwillbeneededfort hecourse
- 2. ToprepareanAcetic-NaAcetateBufferandvalidatetheHenderson-Hasselbachequation.
- 3. TodetermineanunknownproteinconcentrationbyplottingastandardgraphofBSA usingUV-VisSpectrophotometerandvalidatingtheBeer-Lambert'sLaw.
- 4. Titration of Amino Acids and separation of aliphatic, aromatic and polar aminoacidsbythinlayerchromatography.
- 5. Purification and characterization of an enzyme from a recombinant source(suchasAlkalinePhosphataseorLactateDehydrogenaseoranyenzym eoftheinstitution'schoice).
- a) Preparationofcell-freelysates
- b) AmmoniumSulfateprecipitation
- c) Ion-exchangeChromatography
- d) GelFiltration
- e) AffinityChromatography
- f) Dialysisofthepurifiedproteinsolutionagainst60% glycerolasademonstr ationofstoragemethod
- g) Generating a Purification Table (protein concentration, amount of totalprotein; Computing specific activity of the enzyme preparation at eachstageofpurification)
- h) AssessingpurityofsamplesfromeachstepofpurificationbySDS-PAGEGelElectrophoresis
- i) EnzymeKineticParameters:Km,VmaxandKcat.

Course	MSMB-152

code															
Categor	y	Appli	ed So	cienc	es										
Course		Micro	hial	Dive	rcity	Lah									
title		MICIU	Diai	Dive	sity	Lau	•								
Scheme		CR	L		Т]	P								
and		2	0		0	4	4								
Credits															
Pre-															
requisite	es	Nil													
(if any)															
Objectiv	ves	Theob basicn	jecti nicro	veoft biolo	hislat gical	oorate techn	orycou iques	irseis	to	pr	ovide	pra	actical	skills	on
		Studer	ntssh	ouldł	seable	eto:									
			1. Isolate, characterize and identify common bacterial organism												
			s;												
Outcom	es		2. Determinebacterialloadofdifferentsamples;												
0	•••		 Determinebacterianoadordinerentsamples; Performantimicrobialsensitivitytests; 												
			 Performantificrobialsensitivitytests; Preservebacterialcultures. 												
			4. FIESERVEDACIEFIAICUITURES.												
				n	1	1	r	1							
	РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	P O o	P 0	PO 11	P 0 12	PSO 1	PSO 2	PS O 2
CO 1	1	2	2	1	3	2	1	1	2	10	1	2	1	1	1
CO 2	2	1	1	2	2	-	1	-	2	3	1	1	2	-	2
$\begin{array}{c} CO 3 \\ \hline CO 4 \end{array}$	$\frac{3}{2}$	1 2	$\frac{2}{3}$	$\frac{2}{1}$	$\frac{2}{2}$	$\frac{2}{2}$	2	3	$\frac{3}{2}$	$\frac{2}{2}$	$\frac{2}{1}$	$\frac{2}{2}$	2	$\frac{2}{2}$	- 2
Avera	2	2	5	1		2	1	1	2	2	1	2	1	2	
ge	2.0	1.5	2.0	1.5	2.3	1.5	1.3	1.3	2.3	2.0	1.3	1.8	1.5	1.3	1.3
Experim	ient	details													
1. S	terili	zation,	lisin	fectio	onand	safet	yinmio	crobic	logic	allab	orator	y.			
2. P	repar	rationot	fmed	iafor	cultiv	ation	ofbact	teria.	-			•			
3. Is	solati	onofba	cteri	ainpu	irecul	tureb	ystrea	kplate	emeth	nod.					
4. S	tudy	ofcolon	vanc	lgrov	vthcha	aracte	eristics	sofsor	neco	mmoi	nbacte	eria:			
5. B	- Racilli	us,E.col	i,Staj	ohylo	сосси	s,Stre	eptococ	ccus,et	c.						
6. P	repa	rationo	fbact	erials	smear	andC	Jram's	staini	ng.						
7. E	lnum	eration	ofbac	cteria	:stand	lardp	lateco	unt.	-						
8. A	ntim	icrobia	lsens	sitivit	ytest	andde	emons	tratio	nofdr	ugres	sistanc	e.			
9. Maintenanceofstockcultures:slants.stabsandglvcerolstockcultures															
10. Determinationofphenolco-efficientofantimicrobialagents.															
11. DeterminationofMinimumInhibitoryConcentration(MIC)															
					-91111										
L															

Course	code				Ι	MSMB -153										
Categor	y				A	Appli	ed Sci	iences								
Course	title				I	Bioph	ysical	l Tech	nique	es Lab						
Scheme	and				(CR	L	I	Т	P						
Credits					2	2	0	(0	4						
Pre-requ	uisite	S			1	Nil	I				I					
(if any)						The chieve of this laboratory accuracies to introduce students to										
Objectiv	ves					Theobjectiveofthislaboratorycourseistointroducestudentsto experimentsinBiophysical techniques.Thecourseisdesignedto teach students the utility of set of experimental methods in a problemoriented manner.										
Outcom	es					On stude 1. 7 2. 7 1 i u h	con ntssho Foelab orunex Fo aborat nciple usingth nemist	mpleti ouldbe oorateo fan toryins hosein ry, mi	on abletc concep ents; miliar strum strum crobid	of etsofbi ize entsand of entswi plogy a	thi ophys: wi dunder thexpe	s icaltec th rstanda measu erimer nolecu	course bniqie ba andthe iremen itsinbi iles.	e, eswith sic epr nts oc	easyt	
	PO	PO	PO	PO	PO	PO	PO 7	PO	PO	PO 10	PO 11	PO 12	PS	PS	PS	
CO 1	1	2	2	4	3	2	1	ð	2	2	1	12		1	1	
	2	1	1	3	2	-	1	-	2	- 3	1	1	2	1	2	
Avera	-	-					-		+ -		-			-	2	
ge	1.5	1.5	1.5	2	2.5	1	1	0.5	2	2.5	1	1.5	1.5	0.5	1.5	
Experin	nent	detai	ls													
1.	Exp asco rena	erime ompai aturat	entalv redtor ion.K	verific native inetic	ation doub sofD	thatal lestra NAre	bsorpt indedI enatura	ionat(DNA.r ationa	DD ₂₆₀ reversa safunc	jismor alofthe ctionof	eforde samef DNAs	enature ollowi size.	edDNA ingDN	A [A		

- 2. IdentificationofanunknownsampleasDNA,RNAorproteinusingavailable laboratorytools.(OptionalExperiments)
- $\hbox{3.} Biophysical methods (Circular Dichroism Spectroscopy, Fluorescence Spectroscopy). }$
- 4. DeterminationofmassofsmallmoleculesandfragmentationpatternsbyMas sSpectrometry.
- 5. As per syllabus

SEMESTER-II

Course code		MSMB -201								
Category		Applied Sciences								
Course title		Genetic Engineering								
Scheme and		CR	L	Т	Р					
Credits		4	4	0	0					
Pre-requisites		Nil								
(if any)		111								
Objectives	students with various approaches to conducting genetic engineering and their applications in biological research as well as in biotechnology industries. Genetic engineering is a technology that has been developed based on our fundamental understanding of the principles of molecular biology and this is reflected in the contents of this course.									
Outcomes	On course,st 1.En c 2.Ac e 3.Ap sci all	co tudents dowed of this to quainte nzyme oply Rl ence, 1 ied fiele	mpletio shouldb with str echnolo ed wit s, vecto DT in nedical ds for th	n beableto rong the ogy. h too rs and l differe , agricu he welfa	o: eoreti ls o hosts. nt do ulture are of	of this ical knowledge of RDT like omains of life e, forensic and f living beings.				
S. No.	Unit details						Time Allotted			
Unit-1	and mpact of ety; gene genetic e onuclease w enzyme e kinase,	tools genetic eral re ngineer s and r , T4 D alkali	for c engin equirem ring ex nethylas PNA poi ne pho	genet eering eents f perimen ses; DN lymeras	t ic in for nt; NA se, se;	6 Hrs				

	cohesive and blunt end ligation; linkers;	
	adaptors; homopolymeric tailing; labelling of	
	DNA: nick translation, random priming,	
	radioactive and non-radioactive probes,	
	hybridization techniques: northern, southern,	
	south-western and far-western and colony	
	hybridization, fluorescence in situ	
	hybridization.	
	Different types of vectors: Plasmida:	
	Bacterionhages: M13 mn vectors: PUC19 and	
	Bluescript vectors hagemids: Lambda vectors:	
	Insertion and Replacement vectors: Cosmids:	
	Artificial chromosome vectors (YACs; BACs);	
	Principles for maximizing gene expression	
	expression vectors; pMal; GST; pET-based	
Unit-2	vectors; Protein purification; His-tag; GST-tag;	7Hrs
	MBP-tag etc.; Intein-based vectors; Inclusion	
	bodies; methodologies to reduce formation of	
	inclusion bodies; mammalian expression and	
	replicating vectors; Baculovirus and	
	Pichiavectors system, plant based vectors, Ti	
	and R ₁ as vectors, yeast vectors, shuttle vectors.	
	Different types of PCR techniques: Principles	
	of PCR: primer design; fidelity of thermostable	
	enzymes; DNA polymerases; types of PCR -	
	multiplex, nested; reverse-transcription PCR,	
	real time PCR, touchdown PCR, hot start PCR,	
	colony PCR, asymmetric PCR, cloning of PCR	
	products;	
Unit-3	T-vectors; proof reading enzymes; PCR based	7Hrs
	site specific mutagenesis; PCR in molecular	
	diagnostics; viral and bacterial detection;	
	sequencing methods; enzymatic DNA	
	sequencing; chemical sequencing of DNA;	
	automated DNA sequencing; RNA sequencing;	
	chemical synthesis of oligonucleotides;	
	mutation detection: SSCP, DGGE, RFLP.	
	Gene manipulation and protein-DNA	
Unit-4	interaction: Insertion of foreign DNA into host	7Hrs
	cells; transformation, electroporation,	

				t 1 0 0 0 0 0 1 1 2 2 2	ransf mRN cDNA constr cDNA dNA assay;	ectior A and A syn ructio A arra inter 5 DN 6 chro	n; con l tota thesis n of ys an action lasefo	struct l RNA ; cDN micro d olig ns: ele otprin n imr	ion o A; rev NA a parray go arr ectrop ating; nunoj	f libra verse nd gv vs – ays; ohore met precij	aries; i transc enomi genor study tic mo hyl i pitatio	isolat riptas c libr nic a of pr bility nterfe n; pr	ion of se and caries; urrays, otein- y shift erence otein-		
				I s	protei syster	n in n;	teract	tions	usin	g y	east	two-ł	nybrid		
Unit-5				I I <t< th=""><th>Gene Gene techn Introd Micro princi knock transg introd flies(<i>I</i> (<i>Xeno</i> Trans</th><th>displ sologi luctio b RN ple an couts genic luctio differe Droso pus), genic</th><th>ay. silences: n to A; c nd ap and plan n to 1 ent phila fis</th><th>ingan Gene siRl onstru plicati gen its; c metho mode), wc h (z</th><th>d si NA; iction ion o lebate ds of el so orms ebra</th><th>gen lenci siRl of f gen herap e ov gene systen (C. fisl</th><th>ng t NA tu siRNA e silen y; cr ver G etic ma ns d elegan n) an</th><th>echnic echnic echnic A ve acing; reatio M c anipu <i>e.g.</i> <i>uns</i>), nd c targ</th><th>diting iques; ology; octors; gene n of crops; lation fruit frogs chick; eting:</th><th>13Hrs</th><th></th></t<>	Gene Gene techn Introd Micro princi knock transg introd flies(<i>I</i> (<i>Xeno</i> Trans	displ sologi luctio b RN ple an couts genic luctio differe Droso pus), genic	ay. silences: n to A; c nd ap and plan n to 1 ent phila fis	ingan Gene siRl onstru plicati gen its; c metho mode), wc h (z	d si NA; iction ion o lebate ds of el so orms ebra	gen lenci siRl of f gen herap e ov gene systen (C. fisl	ng t NA tu siRNA e silen y; cr ver G etic ma ns d elegan n) an	echnic echnic echnic A ve acing; reatio M c anipu <i>e.g.</i> <i>uns</i>), nd c targ	diting iques; ology; octors; gene n of crops; lation fruit frogs chick; eting:	13Hrs	
					creati diseas CRIS Chine	on o se mo PR-C se an	of tr del; in AS d Am	ansge ntrodu with ericar	nic iction spe	and to get ical tr	knoc enome emp rials.	k-out editi bhasis	mice; ng by s on		1
	P 0 1	PO 2	PO 3	PO 4	creation diseas CRIS Chine PO 5	on c se mo PR-C se an PO 6	of tr del; in AS d Am PO 7	ansge ntrodu with ericar PO 8	nic nic spe clin P O g	and to ge cific ical tr P O 10	knoc enome emp rials. PO 11	k-out editi ohasis P O 12	mice; ng by s on PSO 1	PSO 2	PSO 3
C0 1	Р О 1	PO 2 2	PO 3	PO 4	creation diseas CRIS Chine PO 5 3	on compression compre compression compression compress	of tr del; in AS d Am PO 7 1	ansgentrodu with ericar PO 8	nic iction spe clin P O 9 2	and to get cific ical tr P O 10	knoc enome emp rials. PO 11 2	k-out editi ohasis P O 12 2	mice; ng by s on PSO 1	PSO 2	PSO 3
CO 1 CO 2	P O 1 1	PO 2 1	PO 3 1	PO 4 1 2	creation diseas CRIS Chine PO 5 3 -	on con con con con con con con con con c	$\frac{1}{2}$	ansge ntrodu with ericar PO 8 1 1	nic iction spectruction P O 9 2 2 2	and to go ccific ical tr P O 10 1 3	knoc enome emp rials. PO 11 2 1	k-out editi bhasis P O 12 2 -	PSO 1 2	PSO 2 1 1	PSO 3 1 2
CO 1 CO 2 CO 3	P O 1 1 2	PO 2 1 1	PO 3 1 2	PO 4 1 2 1	creation disease CRIS Chine PO 5 3 - 2	permeters on the set of the set o	b ge of tr del; in AS d Am PO 7 1 2 2 2	ansge ntrodu with ericar PO 8 1 1 3	nic iction spendent P O 9 2 2 1	and to geoific ical tr P O 10 1 3 2	knoc enome emp rials. PO 11 2 1 2	P O 12 2 - 2	PSO 1 2 2	PSO 2 1 2	PSO 3 1 2 -
CO 1 CO 2 CO 3 Avera ge	P O 1 1 2 1.3	PO 2 2 1 1 1.3	PO 3 1 2 1.3	PO 4 1 1.3	creation diseas CRIS Chine PO 5 3 - 2 1.7	genne on c on c se mo PR-C se an PO 6 2 1 2 1 2 1.7 1.7	b ge of tr del; in AS d Am PO 7 1 2 2 1.7	ansge ntrodu with ericar PO 8 1 1 3 1.7	nic nic spe clin P O 9 2 2 1 1.7	and to geocific ical tr P 0 10 1 3 2 2.0	knoc enome emp rials. PO 11 2 1 2 1.7	P O 12 2 - 2 - 2 1.3 1.3	PSO 1 1 2 2 1.7	PSO 2 1 1 2 1.3	PSO 3 1 2 - 1.0

	Promega, Novagen, New England Biolab etc.

Course code	MSM	IB -20	2									
Category	Applied Sciences											
Course title	Imm	unotec	hnology	7								
Scheme and	CR	L	Т	P								
Credits	3	3	0	0								
Pre-requisites (if any)	Nil		1	1								
Objectives	The objectives of this course are to learn about structural features of components of immune system as well as their function. The major emphasis of this course will be on development of immune system and mechanisms by which our body elicits immune response. This will be imperative for students as it will help them to predict about nature of immune response that develops against bacterial, viral or parasitic infection, and prove it by designing new experiments.											
Outcomes	 On completion of this course, students should be able to: 1. Evaluate usefulness of immunologyin different pharmaceutical companies; 2. Identify proper research lab working in area of their own interests; 3. Apply their knowledge and design immunological experiments to demonstrate innate, humoral or cytotoxic T lymphocyte responses and figure out kind of immune responses in the setting of infection (viral or bacterial). 											
S. No.	Unit	details			Time Allotted							
Unit-1	Unit detailsAllottedImmunology: fundamental concepts and overview of the immune system:Components of innate and acquired immunity; phagocytosis; complement and inflammatory responses; pathogen recognition receptors (PRR) and pathogen associated molecular pattern (PAMP); innate immune response; mucosal immunity; antigens: immunogens, haptens; MajorAllotted											

	Histocompatibility Complex: MHC genes, MHC and	
	immune responsiveness and disease susceptibility,	
	Organs of immune system, primary and secondary	
	lymphoid organs.	
	Immune responses generated by B and T	
	lymphocytes:Immunoglobulins - basic structure,	
	classes & subclasses of immunoglobulins, antigenic	
	determinants; multigene organization of	
	immunoglobulin genes; B-cell receptor;	
	Immunoglobulin superfamily; principles of cell	
	signaling; basis of self & non-self discrimination;	
	kinetics of immune response, memory; B cell	
Unit-2	maturation, activation and differentiation; generation	8Hrs
	of antibody diversity; 1-cell maturation, activation and	
	subsets: cell mediated immune responses ADCC:	
	cytokines: properties receptors and therapeutic uses:	
	antigen processing and presentation- endogenous	
	antigens, exogenous antigens, non-peptide bacterial	
	antigens and super-antigens; cell-cell co-operation,	
	Hapten-carrier system.	
	Antigen-antibody interactions: Precipitation.	
	agglutination and complement mediated immune	
	reactions; advanced immunological techniques: RIA,	
	ELISA, Western blotting, ELISPOT assay,	
	immunofluorescence microscopy, flow cytometry and	
Unit-3	immunoelectron microscopy; surface plasmon	6Hrs
	resonance, biosensor assays for assessing ligand -	
	receptor interaction; CMI techniques:	
	lymphoproliferation assay, mixed lymphocyte	
	reaction, cell cytotoxicity assays, apoptosis,	
	microarrays, transgenic mice, gene knock outs.	
	Vaccinology: Active and passive immunization; live,	
	killed, attenuated, subunit vaccines; vaccine technology:	
	role and properties of adjuvants, recombinant DNA and	
T T •/ A	protein based vaccines, plant-based vaccines, reverse	011
Unit-4	vaccinology; peptide vaccines, conjugate vaccines;	ðHrs
	antibody genes and antibody engineering: chimeric,	
	monoclonal antibodies: catalytic antibodies and	
	generation of immunoglobulin gene libraries, idiotypic	
Unit-3 Unit-4	Antigen-antibodyinteractions:Precipitation,agglutinationand complementmediatedimmunereactions;advancedimmunologicaltechniques:RIA,ELISA,Westernblotting,ELISPOTassay,immunofluorescencemicroscopy,flowcytometryandimmunoelectronmicroscopy;surfaceplasmonresonance,biosensorassaysforassessingligandreceptorinteraction;CMItechniques:lymphoproliferationassay,mixedlymphocytereaction,cellcytotoxicityassays,apoptosis,microarrays,transgenicmice,geneknockVaccinology:Activeandpassiveimmunization;live,killed,attenuated,subunitvaccines;vaccine technology:roleandproteinbasedvaccines,plant-basedvaccines;andprotein basedvaccines;andproteinbasedvaccines,plant-basedvaccines;antibodygenerationge	6Hrs 8Hrs

						•			1			• •	1.1				
					vac	cines	anc	i mai	rker	vacc	ines,	viral	-like	partic	les		
					(VI	LPs),	dend	ritic c	ell b	ased	vacc	ines, v	accir	ie again	nst		
					can	cer,	T c	ell ba	used	vacci	ne,	edible	vac	cine a	nd		
					the	rapeu	itic va	ccine.									
					Cli	nical	im	muno	logv	Im	muni	tv to	o int	fection	:		
					bac	teria.	vira	l. fur	igal	and r	oaras	itic in	fectio	ons (w	ith		
					exa	mple	s fro	m eac	h gro	oup):	hype	rsensi	tivitv	: Type	I-		
					IV:	aut	oimm	unity	tvn	es o	fau	toimn	nune	disease	es:		
					me	chani	sm a	nd rol	e of	CD4+	- T c	ells: N	ЛНС	and TO	CR		
					in	autoi	mmu	nity:	reatr	nent	of at	ıtoimr	nune	disease	es:		
					trar	ispla	ntatio	n: imi	nuno	logica	al bas	sis of	graft	rejectio	on:		
					clin	ical	tra	nsplar	tatio	n a	nd	imm	inosu	ppressi	ve		
	Unit-5				the	therapy; tumor immunology: tumor antigens; immune										Hrs	
					res	response to tumors and tumor evasion of the											
					im	immunesystem, cancer immunotherapy;											
					im	immunodeficiency: primary immunodeficiencies,											
					acq	acquired or secondary immunodeficiencies,											
					aut	autoimmune disorder, anaphylactic shock,											
					im	nuno	senes	cence	, im	mune	exł	naustic	on in	chroi	nic		
					vira	viral infection, immune tolerance, NK cells in chronic											
					vira	viral infection and malignancy.											
					Im	Immunogenetics: Major histocompatibility complex											
					gen	genes and their role in autoimmune and infectious											
					dise	diseases, HLA typing, human major histocompatibility											
					con	complex (MHC), Complement genes of the human											
1	Unit-6				ma	major histocompatibility complex: implication for 5Hrs											
					link	linkage disequilibrium and disease associations, genetic											
					Stu	studies of rheumatoid arthritis, systemic lupus											
					hur	erythematosus and multiple sclerosis, genetics of											
					spo	human immunoglobulin, immunogenetics of spontaneous control of HIV KIR complex											
ſ		Р	20	-	Do			na		P	P	- no	P	200	-	200	
		0	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	0	0	PO 11	0	PSO 1	PSO	PSO 3	
	<u> </u>	1	-	5	•		•	,	0	9	10		12	-		5	
	<u>CO1</u>	1	2		1	3	2	1		2	1	2	2	1	1	1	
	$\frac{\text{CO 2}}{\text{CO 3}}$	1	1	1	1	-	1	2	1	2 1	3 2	1	-	2	1	2	
	Avera	Z	1	2	1	Z	2	2	3	1	Z	2	2	2	2	-	
	ge	1.3	1.3	1.3	1.3	1.7	1.7	1.7	1.7	1.7	2.0	1.7	1.3	1.7	1.3	1.0	
					1.	Kinc	lt, T.	J., Go	ldsby	, R. 1	A., O	sborne	e, B	A., &K	uby, J	. (2006).	
						Kub	y Imr	nunol	ogy. I	New Y	York	W.H	. Free	man.			
					2.	Bros	stoff,	J., Se	addii	n, J.	K., I	Male,	D., 8	kRoitt,	I. M.	(2002).	
						Clin	ical li	mmun	ology	y. Lor	idon:	Gowe	er Me	dical P	ub.	(2012)	
	Referen	ces			3.	Mur	phy,	K., Ti	raver	s, P.,	Wal	port, 1	M., ð	zJanew	ay, C.	(2012).	
					4	Janeway's Immunobiology. New York: Garland Science.										Vorb	
					4.	4. Paul, W. E. (2012). Fundamental Immunology. New York:											
					5	God	ing 1	555.	(1004	5) M	onoo	lonal	Antih	odian	Drinai	nlee and	
					5.	Drac	nig, J	rodu. Produ	(1990 otion). WI and /		cation		iouies.	$r_1 m c_1$ nal Ar	tibodies	
					1	1140	1100.1	LIUUU	LION	anu f	zhhn	cation		010010	nai Al	nioouies	

 Academic Press. 6. Parham, P. (2005). The Immune System. New York: Garlar Science.

Course code	MSM	B -203	3									
Category	Applied Sciences											
Course title	Bioinformatics											
Scheme and Credits	CR 3	L 3	T 0	P 0								
Pre-requisites (if any)	Nil											
Objectives	The objectives of this course are to provide theory and practical experience of theuse of common computational tools and databases which facilitate investigation of molecular biology and evolution-related concepts.											
Outcomes	 On completion of this course, students should be able to: 1. Develop an understanding of basic theory of these computational tools; 2. Gain working knowledge of these computational tools and methods; 3. Appreciate their relevance for investigating specific contemporary biological questions; 4. Critically analyse and interpret results of their study. 											
S. No.	Unit	details				Time Allotted						
Unit-1	Bioin Comp Unix Datab	formation outers i and l base c	tics n biolog Linux concepts	basics gy and system s; Prc	Bioinformatics basics: medicine; Introduction to s and basic commands; tein and nucleic acid	5 Hrs						

	databases; Structural databases; Biological XML DTD's; pattern matching algorithm basics; databases and search tools: biological background for sequence analysis;Identification of protein sequence from DNA sequence; searching of databases similar sequence; NCBI; publicly available tools; resources at EBI; resources on web; database mining tools.	
Unit-2	DNA sequence analysis: DNA sequence analysis: gene bank sequence database; submitting DNA sequences to databases and database searching; sequence alignment; pairwise alignment techniques; motif discovery and gene prediction; local structural variants of DNA, their relevance in molecular level processes, and their identification; assembly of data from genome sequencing.	5Hrs
Unit-3	Multiple sequence analysis: Multiple sequence analysis; multiple sequence alignment; flexible sequence similarity searching with the FASTA3 program package; use of CLUSTALW and CLUSTALX for multiple sequence alignment; submitting DNA protein sequence to databases: where and how to submit, SEQUIN, genome centres; submitting aligned sets of sequences, updating submitted sequences, methods of phylogenetic analysis.	5Hrs
Unit-4	Protein modelling: Protein modelling: introduction; force field methods; energy, buried and exposed residues; side chains and neighbours; fixed regions; hydrogen bonds; mapping properties onto surfaces; fitting monomers; RMS fit of conformers; assigning secondary structures; sequence alignment- methods, evaluation, scoring; protein completion: backbone construction and side chain addition; small peptide methodology; software accessibility; building peptides; protein displays; substructure manipulations, annealing.	5Hrs
Unit-5	Protein structure prediction and virtual library: Protein structure prediction: protein folding and model generation; secondary structure prediction; analyzing secondary structures; protein loop searching; loop generating methods; homology	6Hrs

_																	
					mo	odelli	ng:	pote	ntial	apj	plicat	ions,	des	scriptio	n,		
					me	ethod	ology	, hor	nolog	gous	sequ	ence	ident	ificatio	n;		
					ali	gn st	ructu	res, a	lign 1	node	l seq	uence	; con	structio	on		
					of	vai	iable	and	co	nserv	ed	region	ns; t	hreadin	ng		
					tec	chniq	ues;	topo	logy	fing	gerpr	int a	ppro	ach fo	or		
					pro	edicti	on; e	valua	tion of	of alt	ernat	e mod	dels;	structu	re		
					pro	edicti	on o	n a r	nyste	ry se	quen	ce; st	ructu	re aide	ed		
					see	quen	e tec	hniqu	es of	struct	ture r	oredict	ion; s	structur	al		
					pr	ofiles	. ali	ignme	nt a	lgorit	hms.	mut	ation	table	s.		
					br	edicti	on.	validat	tion.	seau	ence	based	l me	thods of	of		
					str	uctur	e pre	dictio	n. pre	dictio	on us	ing in	verse	foldin	g.		
					fo	ld r	ng										
					teo	chnia	in										
					fu	nctio	19										
					de	unction prediction; elements of in silico drug lesign:Virtual library: Searching PubMed. current											
					co	design; Virtual library: Searching PubMed, current											
	content, science citation index and current awareness services, electronic journals, grants and funding																
	information.																
		Р	DO	DO			DO	DO	DO	Р	Р	DO	Р	DCO	DCO	DCO	Т
		0	PO 2	PO 2		PO 5	PO 6	PO 7	PO	0	0	PO 11	0	PSO 1	PSO 2	PSO 2	
		1	2	3	4	3	U	/	o	9	10	11	12	1	4	3	
	CO 1	1	2	1	1	3	2	1	1	2	1	2	2	1	1	1	_
	<u>CO 2</u>	1	1	1	2	-	1	2	1	2	3	1	-	2	1	2	-
	$\frac{\text{CO}3}{\text{CO}4}$	2	1	2	1	2	2	2	3	1	2	2	2	2	2	-	-
	Avera	Z	1	2	1	2	2	Z	3	1	2	2	2	2	2	-	-
	ge	1.5	1.3	1.5	1.3	1.8	1.8	1.8	2.0	1.5	2.0	1.8	1.5	1.8	1.5	0.8	
	0					1.	Lesk,	А.	M.	(2002	2). 1	ntrodu	ictior	n to E	Bioinfo	matics.	
							Oxfo	rd: Ox	ford	Unive	ersity	Press					
						2.	Mour	nt, D	. W.	(20	01).	Bioin	form	atics:	Sequen	ce and	l
							Geno	me A	nalys	is. C	old S	pring	Hart	or, NY	Z: Cold	Spring	ŗ
							Harb	or Lat	orato	ry Pr	ess.	1 0		ŗ		1 0	
						3.	Baxe	vanis,	A.	D.	. &	: Ou	ellett	e, B.	F.	(2001).	
							Bioin	forma	tics:	a Pra	ctica	l Guid	e to t	the Ana	lysis of	Genes	;
							and P	rotein	s. Ne	w Yo	ork: V	Vilev-	Inters	science.	<u> </u>		
	Referen	ces				4.	Pevsi	ner.	J. (2015)). B	lioinfo	rmati	ics an	d Fur	nctional	l
							Geno	mics.	Hobe	oken.	NJ.:	Wilev	-Blac	kwell.			
						5.	Bour	ne. P.	E., 8	&Gu.	J. (2	2009).	Strue	ctural F	Bioinfoi	matics.	
							Hobo	ken. N	, v vJ: W	ilev-	Liss		~	L			
						6.	Lesk	A.	M. (2004). In	troduc	ction	to Pro	otein S	cience:	
									(·· -··				N		
	6. Lesk, A. M. (2004). Introduction to Protein Architecture, Function, and Genomics. Oxfor												xford:	Oxford	Į.		

Course code	MSM	MSMB -204										
Category	Appli	Applied Sciences										
Course title	Micro	Microbial Physiology and Metabolism										
Scheme and	CR	L	Τ	Р								

Credits	4	4	0	0										
Pre-requisites (if any)	Nil		1	I										
Objectives	This about pathy and synth	This course enables the students to provide basic kr about catabolism, anabolism, regulation of metabol pathway analysis. It also gives understanding of how and metabolites in living system work to produce en synthesizing different biomolecules.												
Outcomes	 On completion of this course, students should be able to: 1. Understand the microbial growth in different physiological conditions. 2. Learn the phenomenon of nutrient utilization of microbes. 3. Comprehend the concept of microbial respiration and the metabolism. 													
S. No.	Unit	details					Time Allotted							
Unit-1	Micro nature Gener growt and t apopto organ mecha	12Hrs												
Unit-2	Cent Meta Pyruv (EMI pathy Entro utiliz	ral pa bolic vate f P) /gl vay (er-Dou ing pyr	thways pathwa formatio ycolytic PPP) doroff ruvate (1	ays ir ays ir n (En pathw /hexose pathwa FCA cy	rbohydrate aerobic bden-Meyerl vays, Pentos monophosp y). Metabol cle, glyoxylat	metabolism: heterotrophs: nof pathway e phosphate phate shunt, ic pathways e cycle).	12 Hrs							
Unit-3	Ener phos trans phos	12 Hrs												
Unit-4	Micro and p synthe	12 Hrs												

	and Proline) and Aspartate family (Asparagine,													ie,		
					M	ethior	nine,	Three	onine,	Isol	eucin	ne and	l Lys	sine) ai	nd	
					Hi	stidin	ie									
					Μ	icrob	ial :	synth	esis	II:	Micr	obial	synt	hesis	of	
					Ar	omat	ic fa	amily	(Try	ptopl	han,	Pheny	ylalar	nine ai	nd	
					Ту	rosin	e), S	erine	famil	y (Gl	lycine	e and	Cyste	eine) ai	nd	
Unit-	-5				Py	ruvat	e fa	mily	(Ala	nine,	Val	line a	ind 1	Leucine	e). 12	Hrs
	Biosynthesis of phospholipid													id		
					(P)	hosph	nd									
					ca	rdioli	pin).					-				
		PO	PO	PO	PO	PO	PO	PO	PO	Р	Р	PO	Р	PSO	PSO	PSO
		IU	10	10	10	10	10	10	10	$\mathbf{\Omega}$	$\mathbf{\Omega}$	10	Ω	160	150	150
		1	2	3	4	5	6	7	8	U 0	U	11	U	1	2	3
	-	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO	1	1	2 2	3 2	4 1	5 3	6 2	7 1	8 1	9 2	10	11 2	12 3	1	2 2	3
CO CO	1 2	1 1 2	2 2 1	3 2 1	4 1 2	5 3 2	6 2 1	7 1 2	8 1 1	9 2 2	10 1 -	11 2 1	12 3 -	1 1 2	2 2 1	3 1 2
CO CO CO	1 2 3	1 1 2 2	2 2 1 1	3 2 1 2	4 1 2 1	5 3 2 1	6 2 1 2	7 1 2 2	8 1 1 3	9 2 2 1	10 1 - 2	11 2 1 2	12 3 - 2	1 1 2 2	2 2 1 2	3 1 2 -
CO CO CO Aver	1 2 3 ra	1 1 2 2	2 2 1 1	3 2 1 2	4 1 2 1	5 3 2 1	6 2 1 2	7 1 2 2	8 1 1 3	9 2 2 1	10 1 - 2	11 2 1 2	12 3 - 2	1 1 2 2	2 2 1 2	3 1 2 -
CO CO CO Avei ge	1 2 3 ra	1 2 2 1.7	2 2 1 1 1.3	3 2 1 2 1.7	4 1 2 1 1.3	5 3 2 1 2.0	6 2 1 2 1.7	7 1 2 2 1.7	8 1 3 1.7	9 2 2 1 1.7	10 1 - 2 1.0	11 2 1 2 1.7	12 3 - 2 1.7	1 1 2 1.7	2 2 1 2 1.7	3 1 2 - 1.0
CO CO CO Avei ge	1 2 3 ra	1 2 2 1.7	2 2 1 1 1.3	3 2 1 2 1.7	4 1 2 1 1.3	5 3 2 1 2.0 1.	6 2 1 2 1.7 The	7 1 2 2 1.7 Micro	8 1 3 1.7 obial	9 2 2 1 1.7 worl	0 10 1 2 1.0 d∥ b	11 2 1.7 y Sta	12 3 - 2 1.7 anier,	1 2 2 1.7 Ingral	2 2 1 2 1.7 ham, V	3 1 2 - 1.0 Wheelis
CO CO CO Avei ge	1 2 3 ra	1 2 2 1.7	2 2 1 1 1.3	3 2 1 2 1.7	4 1 2 1 1.3	5 3 2 1 2.0 1.	6 2 1 2 1.7 The and 1	7 1 2 1.7 Micro Painter	8 1 3 1.7 bbial r. Mc	9 2 1 1.7 worl cMilla	10 1 - 2 1.0 dl b an E	11 2 1.7 y Sta ducatio	12 3 - 2 1.7 anier, onal	1 2 2 1.7 Ingral Ltd., L	2 1 2 1.7 ham, V condon.	3 1 2 - 1.0 Wheelis
CO CO CO Avei ge	1 2 3 ra	1 1 2 2 1.7	2 2 1 1 1.3	3 2 1 2 1.7	4 1 2 1 1 1.3	5 3 2 1 2.0 1. 2.0	6 2 1 2 1.7 The and I Micro	7 1 2 1.7 Micro Painter obial F	8 1 3 1.7 bbial r. Mc Physic	9 2 2 1 1.7 worl cMilla	10 1 2 1.0 d b an E by 2	11 2 1.7 y Sta ducation Moat	12 3 - 2 1.7 anier, onal and F	1 2 2 1.7 Ingral Ltd., L	2 1 2 1.7 ham, V condon. Wiley.	3 1 2 - 1.0 Wheelis
CO CO CO Avei ge	1 2 3 ra ra	1 1 2 2 1.7 ees	2 2 1 1 1.3	3 2 1 2 1.7	4 1 2 1 1.3	5 3 2 1 2.0 1. 2.0 3.	6 2 1 2 1.7 The and I Micro	7 1 2 1.7 Micro Painter obial F	8 1 3 1.7 0bial r. Mc Physic of Bac	9 2 1 1.7 worl cMilla ology	10 1 2 1.0 d∥ b an Eo by 1 1 Phy	112121.7y StaducationMoat associationsiologiation	12 3 - 2 1.7 anier, onal and F y by	1 2 2 1.7 Ingral Ltd., L Soster , Umbrei	2 1 2 1.7 ham, V London. Wiley.	3 1 2 - 1.0 Wheelis

Course code	MSMB -205										
Category	Appli	ed Scie	ences								
Course title	Agric	ulture	Microb	oiology							
Scheme and	CR	L	Т	P							
Credits	4	4	0	0							
Pre-requisites (if any)	Nil										
Objectives	The course aims to provide fundamental knowledge about cytology and physiology of microorganisms, with emphasis to their role in nature and their use in agricultural biotechnology, in relation to soil fertility, organic matter degradation, and microbial interactions with plants and other biotic and abiotic components of soil ecosystem.										
Outcomes	On co 1. 2. 3. 4.	mpletio Unde Learr Unde plant Learr	on of thi rstand t n about t rstand a disease n about 1	is cours he micr the role bout th s. Bioferti	e,studentsshouldbeableto: oorganisms of soil and nutrient cycle. of enzymes and toxins in pathogenesis. e physical and chemical control of lizers & Mycorrhizae.						

S. No.				Un	it de	tails									l'ime Allotter	h
Unit-1				Mi phy inte con cyc cyc	croor yllosp eracti mmer cle: C cle an	ganis ohere ons: usalis: Carbo d sulj	ms micro antag ms, sy n cyc phur c	of oflora gonis /nerg: le , 1 cycle.	soil . Brie m, s ism a nitrog	F ef acc symb and p gen c	Rhizos count iosis, arasiti ycle,	phere of M mut sm. N phosp	and icrobial ualism, Nutrient	4	Hrs	
Unit-2Role of enzymes and toxins in pathogenesis. Fungal diseases of plants: Rusts of wheat, linseeds; late blight of potato; red rot of sugarcane. Bacterial diseases of plants: Citrus canker, blight of rice. Viral diseases of plants: Leaf curl of Papaya, vein clearing of lady's finger.Physical and chemical control of plant diseases												al te al al g	0 Hrs			
Unit-3Physical and chemical control of plant diseases. Bacterial control of insect pests: Bacillus thuringiensis as bacterial insecticide. Viral control of insect pests: Nuclear polyhedrosisvisuses (NPV) and cytoplasmic polyhedrosis viruses (CPV). Fungal control of insect pests: Entomopathogenic fungi : Metarhiniumanisopliae, Beauveriabassiana, Verticilliumlecani, Hirsutellathompsoni												s. s of d 1 1 <i>s</i> ,	Hrs			
Unit-4				Sto dun eff Ge and	ring s ects. neral d alco	fung torag Myco idea bhol fi	gi: Cat e in re otoxin abou com ag	egori elatio s and t qua gricul	es of n to c their rantir tural	stora lama r effe ne. P waste	ge fur ge of s oct on roduct es.	ngi, co seeds, huma ion c	ondition harmfu n being of bioga	ns ul g. 1 as	2 Hrs	
Unit-5				Bie My agr Re mie	oferti /corrl ficulti clama croor	lizers nizae: ure ation ganis	s: Ty Ty and of ms.	pes, pes fo was	prod and orestr ste	uctio the y. agric	n anc ir ap Verr cultura	l app oplica nicon l la	plication tion nposting and b	n. in g. 6 yy	Hrs	
	PO 1	PO	PO 2	PO	PO	PO	PO 7	PO	P O	P O	PO	P O	PSO 1	PSC 2	\mathbf{PS}	0
	1	2	1	7 1	2	2 2	1	1	9	10 1	2 2	12	1	1	1	
CO 1 CO 2	1	2	1	2	2	1	2	1	2	3	1	-	2	1	2	
CO 3	2	1	-	1	1	-	2	2	1	2	1	2	2	2	2	
CO 4	2	1	2	1	2	2	2	2	1	2	2	2	2	2	1	
Avera ge	1.5	1.5	1.0	1.3	2.0	1.3	1.8	1.5	1.5	2.0	1.5	1.5	1.8	1.5	1.5	5
	•	•			1. 5	Soil N	Aicrot	oiolog	gy by	Prof	. N.S.	Subb	a Rao	(200)), Fou	rth
					e	editio	n, Ox	ford	and	IBH	Publis	shing	Co. P	vt, I	.td., N	ew

References	Delhi
	2. Introduction to soil microbiology. Alexander M. (1977)
	John Wiley & Sons, Inc., New York.
	3. Modern Soil Microbiology, Dirk J, Elas V, Trevors JT,
	Wellington, EMH (1997) Marcel Dekker INC, New York

Course code	MSMB -206										
Category	Appli	ed Scie	ences								
Course title	Virolo	ogy									
Scheme and	CR	L	Т	P							
Credits	4	4	0	0							
Pre-requisites	Nil				I						
(if any)											
Objectives	This course is designed to introduce the structure of viruses, provide knowledge on fundamentals of virology; Develop understanding of infection processes at the molecular level; introduce a concept of biosafety against infection or genetic modification.										
Outcomes	On completion of this course, students should be able to: 1. Understand basic concepts in the field of Virology.										
S. No.	Unit o	letails				Time Allotted					
Unit-1	Gener viruse anima of vir Virus	ral Vir s. Non l and t uses; r related	rology: nenclatu pacteria norphol agents	Brief are and l viruse logy & (viroid	outline on discovery of d classification of plant, es. Distinctive properties c ultrastructure of virus. s, prions).	6 Hrs					
Unit-2	Gene Culti exper &sec cell Serol comp ELIS Assa (prote	eral M vation imenta ondary strains ogical lement A and 1 A and 1 y of vi ein, nu	Iethods of v anim cell cu , cell method fixatio radioim ruses – cleic ac	of I iruses als, ar iltures. lines ds – 1 n; imm munoa - physi id, rad	Diagnosis and Serology: in embryonated eggs, nd cell cultures. Primary Monolayer cell cultures; and transgenic systems. haemagglutination& HAI; nunofluorescence methods, ssays. cal and chemical methods lioactivity tracers, electron	8Hrs					

				n p	nicros Dint r	copy) netho). Infe d).	ective	e assa	ay (p	laque	meth	nod, en	ıd	
Unit-3				B o: aj N	acter rganiz oplica 113, N	ial zatior ation Mu, T	Viru a and in ba 3, T4	ses: life c cteria and I	Bac cycle. al ge Lamb	cterio Bact netics da P1	phage terioph s. Brie	: st nage ef de	tructura typing tails of	⁻ 8H	rs
Unit-4	Plant Viruses: Effects of viruses on histology, physiology and cytology of plants. Common viral diseases of plants; paddy, cotton, tomato and sugarcane. Common plant viruses: TMV, Cauliflower Mosaic Virus and Potato Virus X. transmission of plant viruses through vectors and without vectors. Control measures - virus-free planting material; vector control.AnimalVinuses: Vinuses Vinuses Vinuses												y, al d er of s. or	rs	
Unit-5				A pa R T c vii Int	nimal thoge NA V oga, F ruses; terfer	e, of O, A 8H s.	8Hrs								
	P 0 1	PO 2	РО 3	РО 4	РО 5	PO 6	РО 7	PO 8	P 0 9	P 0 10	PO 11	P O 12	PSO 1	PSO 2	PSO 3
CO 1	1	2	1	1	3	2	1	1	2	1	2	2	1	1	1
Avera ge	1	2	1	1	3	2	1	1	2	1	2	2	1	1	1
Referen	ces				 1. 2. 3. 4. 	Conra IIIrd Dimr Virol Oxfo Flint, Skalk Biolo D.C. Malo genet	at HF edition nock l ogy V rd S.J., ra, A. rgy, pa y SR, ics. Jo	, Kin n. Pre NJ, Pi /Ith o Enqu M. (athog Cron ones a	nball entice rimro editio iist, L 2015) enesis nan Ju	PC a Hall se SI n. B W.,). Pri s and r. JE, artlet	and Le , Engle 3. (200 lackwe Krung nciple contro Freife t publi	evy J ewoo (7) In ell So g, R. s of ol, A elder shers	A. (19 d Cliff, ntroduct cientific Racani Virolo SM Pre D. (19	92). Vi New Jo ion to Jo Public ello, V gy, Mo ess, Wa 98). M	irology. ersey. Modern cations, R. And blecular shinton icrobial

Course code	MSM	MSMB -207									
Category	Appli	Applied Sciences									
Course title	Micro	obial T	echnol	ogy							
Scheme and	CR	L	Τ	Р							
Credits	4	4	0	0							

Pre-requisites	Nil	
(if any)	The objectives of this course are to introduce st	udents to
Objectives	developments/ advances made in field of microbial te for use in human welfare and solving problems of the s	echnology ociety.
Outcomes	On completion of this course,studentsshouldbeableto:1. Develop deeper understanding of the microbial and its applications.	technology
S. No.	Unit details	Time Allotted
Unit-1	Introduction to microbial technology:Microbial technology in human welfare; Isolation and screening of microbes important for industry – advances in methodology and its application; Advanced genome and epigenome editing tools (e.g., engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging tools) for manipulation of useful microbes/ strains and their applications; Strain improvement to increase yield of selected molecules, e.g., antibiotics, enzymes, biofuels.	8 Hrs
Unit-2	Environmental applications of microbial technology: Environmental application of microbes; Ore leaching; Biodegradation - biomass recycle and removal; Bioremediation - toxic waste removal and soil remediation; Global Biogeochemical cycles; Environment sensing (sensor organisms/ biological sensors); International and National guidelines regarding use of genetically modified organisms in environment, food and pharmaceuticals.	6 Hrs
Unit-3	Pharmaceuticalapplicationsofmicrobialtechnology:Recombinantproteinandpharmaceuticalsproduction in microbes– commonbottlenecksandissues(technical/operational,commercialandethical);Attributesrequiredinindustrialmicrobesusedasefficientcloningandexpressionhosts(biologicalsproduction);Generatingdiversityand	8 Hrs

				in	trodu	iction	of d	lesiral	ble p	rope	rties in	n inc	lustrial	y	
				in	nport	ant m	nicrob	es (Si	trepto	тусе	es/Yeas	st); N	Aicrobi	al	
				ce	ell fa	ctorie	es; Do	ownst	ream	pro	cessin	g ap	proache	es	
				us	ed in	n indu	ıstrial	prod	luctio	n pro	ocess	(Strei	otomvce	es	
				sr	Ye	ast)		r		Г					
				54	., 10	ust).									
				Fo	od	appl	icatio	ns	of	micr	obial	tec	hnolog	y:	
				Ap	plica	tion (of mi	crobe	s and	1 mi	crobial	pro	cesses	in	
				foc	od an	d hea	lthcai	re ind	lustrie	es - 1	tood p	proces	ssing a	nd	
				100 mi	ou pro	eserva	torget	anuol	OUCS		licatio	es pr	oductio	n, nd	
				va	vaccines (bacterial and viral vectors); Non-									n-	
Unit-4				rec	recombinant ways of introducing desirable properties								es 7 H	Irs	
				in	Gene	erally	recog	gnized	as s	afe (GRAS	5) mi	crobes	to	
				be	be used in food (<i>e.g.</i> , Yeast) - exploiting the existing									ng	
				nat	natural diversity or the artificially introduced diversity										
				thr	through conventional acceptable techniques										
				(m	(mutagenesis, protoplast fusion, breeding, genome shuffling directed evolution <i>ata</i>)										
		shuffling, directed evolution <i>etc.</i>).											Microbi	a1	
				gei	nomi	cs fo	r dise	cover	v of	nov	el enz	y• vme	s. drug	131 15/	
				ant	antibiotics: Limits of microbial genomics with respect										
				to	to use in human welfare; Metagenomics and										
				me	metatranscriptomics - their potential, methods to									to	
				stu	study and applications/use (animal and plant health,										
Unit-5				en	environmental clean-up, global nutrient cycles & 8 Hrs										Irs
				gio	global sustainability, understanding evolution), Global metagenomics initiative - surveys/projects and									al	
				011	tcom	e m	s m	nomi	n lik	su rarv	cons	struct	ion a	nd	
				fur	nctior	nal so	reeni	ng ir	suit	able	hosts	- t	ools a	nd	
				tec	hniqu	ues	for o	disco	very/i	denti	ficatio	on c	of nov	el	
				enz	zyme	s, dru	gs								
		1	1	(e.	g., pr	oteas	e, anti	biotic	etc.	1	1	r			· · · · · · · · · · · · · · · · · · ·
	P O	РО	РО	РО	РО	РО	РО	РО	P O	P O	РО	P O	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	1	3	1	1	3	2	1	3	2	1	2	1	2	1	1
Avera ge	1	3	1	1	3	2	1	3	2	1	2	1	2	1	1
					1.	Lee, Y	Y. K.	(2013). Mi	crobi	al Bio	techr	nology:	Princip	les and
						Appli	cation	is. Ha	cken	sack,	NJ: W	/orld	Scienti	fic.	
					2.	Moo-	Young	g, M	. (20	11).	Comp	orehei	nsive I	Biotech	nology.
					2	Amsto Nolco	erdam		(201)	5) E	Inoval	onadi	o of N	Antoron	omios
					5.	Genes	s Ge	nome	(201. s an	d N	letagei	nome	a of f s' Bas	ics M	ethods
Refere	nces					Datab	ases a	and To	ools.	Bosto	on, MA	A: Sp	ringer U	JS.	
					4. The New Science of Metagenomics Reveali								ng the	Secrets	
of								of Our Microbial Planet. (2007). Wash						ington,	D.C.:
						Natio	nal Ao	caden	nies F	ress.					
					5.	Journ	als: (a	ı) Nat	ure, (b) N	ature I	Biote	chnolog	gy, (c) /	Applied

microbiology	and	biotechnology,	(d)	Trends	in
Biotechnology,	(e)	Trends in Micro	biolog	y,(f) Cur	rent
opinion in Mic	robio	logy, (g) Biotechn	ology	Advances	,(h)
Genome Resear	ch)				

Course	code			MSMB-251												
Categor	у			Ap	oplied	l Scie	ences									
Course	title			Ge	enetio	e Eng	ineeri	ing L	ab.							
Scheme	and			CI	R]	Ĺ	Τ	P								
Credits				2	2 0 0 4											
Pre-req (if any)	uisite	es		Ni	Nil											
Objectiv	ves			Th exp eng	The objectives of this course are to provide students with experimental knowledge of molecular biology and genetic engineering											
Outcom	ies			Ο	n cor 1. (e t e f	npleti Gain expres hem engine funda	ion of hands ssion to beg eering menta	this c s- 01 and p gin a as w l rese	ourse n ex ourific care vell a arch.	e, stue perie catior er in s in	dentssl nce i n. This indus researe	hould n ge s exp try th ch la	lbeablet ene clo erience nat eng borator	o: oning, would ages in ies con	protein enable genetic ducting	
	P 0 1	PO 2	PO 3	РО 4	PO 5	PO 6	РО 7	PO 8	P 0 9	P O 10	PO 11	P 0 12	PSO 1	PSO 2	PSO 3	
CO 1	1	2	1	1	2	2	1	1	-	1	2	1	2	2	1	
Avera ge	1	2	1	1 2 2 1 1 - 1 2 1 2 2 1												
Experin	nent	detai	ls													

- 1. Concept of lac-operon:
 - a) Lactose induction of B-galactosidase.
 - b) Glucose Repression.
 - c) Diauxic growth curve of E.coli
- 2. UV mutagenesis to isolate amino acid auxotroph
- 3. Phage titre with epsilon phage/M13
- 4. Genetic Transfer-Conjugation, gene mapping
- 5. Plasmid DNA isolation and DNA quantitation
- 6. Restriction Enzyme digestion of plasmid DNA
- 7. Agarose gel electrophoresis
- 8. Polymerase Chain Reaction and analysis by agarose gel electrophoresis
- 9. Vector and Insert Ligation
- 10. Preparation of competent cells
- 11. Transformation of E.coli with standard plasmids, Calculation of transformation

efficiency

- 12. Confirmation of the insert by Colony PCR and Restriction mapping
- 13. Expression of recombinant protein, concept of soluble proteins and inclusion body formation in E.coli, SDS-PAGE analysis
- 14. Purification of His-Tagged protein on Ni-NTA columns
 - a) Random Primer labeling
 - b) Southern hybridization.

Course	code			Μ	ISME	8-252										
Categor	ſy			A	Applied Sciences											
Course	title			In	Immunotechnology Lab.											
Scheme	and			C	R	L	Т		Р							
Credits				2		0	0		4							
Pre-req (if any)	uisite	S		Ni	il											
Objecti	ves			T u sy n ir th	The condense nders ysten netho nteraconey ca	bject standi n as ds wi ctions an be	ives ong abo well ill be , isola used i	of th out p as th taug tion in res	nis lab practic neir fu ht to of dif pectiv	borat al as inction deteor feren ye res	ory c pects on. Ba ct diff nt lymj search	ourse of co asic erent phocy work	e are t mponen as well antige yte cells	o deve nts of i l as ad n andan s <i>etc</i> . a:	elop an mmune lvanced ntibody nd how	
Outcon	ies			C)n co p: 1.E p 2.Ic o 3.A c k (mplet valua harma lentify wnint pply xperin ytotos ind o viral o	te us aceution y prop erests their ments kic T of imr pr bact	f this efuln cal co per re ; knov to lym nune cerial)	cour ess compar esearcl wledge demc phocy respo) by lo	se, st of ir nies h lab e an onstra te re onses ookin	tudents nmunc work d desi ate in espons s in se g at cy	s sho ology ing in nate, es an etting ytokin	uld be in di n area o humo nd figu g of in ne profi	able ifferent of their logical ral or ire out fection le.		
	PO 1	PO 2	PO	PO	PO 5	PO	PO 7	PO	P O	P O	PO 11	P O	PSO 1	PSO	PSO 3	
CO 1	2	2	2	1	2	2	, ,	1	9	10	- 11 - 2	12	1			
	2	2	2	1	3	2	2	1	2	1	2	3	1	2	1	

	CO 2	2	1	1	3	3	1	2	1	-	1	1	1	2	1	2
	CO 3	2	1	2	1	-	2	-	3	1	2	2	2	2	2	1
	Avera	2.0	12	17	17	2.0	17	12	17	1.0	1 2	17	2.0	17	17	12
F	 Experin	nent (detai	ls	1.7	2.0	1.7	1.5	1.7	1.0	1.5	1.7	2.0	1.7	1.7	1.5
	1.	Sele met	ectior hods	n of an of ble	nimal ood c	s, pre ollect	parat	ion of serum	antig separ	gens, ation	immu and	ınizati storag	on ar e.	ıd		
	2.	Ant	ibody	/ titre	by E	LISA	metl	nod.								
	3.	Dou diff	uble d	liffus	ion, I	mmu	no-ele	ectrop	hores	is and	d Rac	lial Im	muno	0		
	4.	Cor	nplen	nent f	fixatio	on tes	t.									
	5.	Isol egg	ation	and j	ourifi	catio	n of Ig	gG fro	om sei	rum c	or IgY	from	chic	ken		
	6.	SDS	S-PA	GE, I	mmu	noblo	tting,	, Dot l	olot a	ssays						
	7.	Blo	od sn	near i	denti	fication	on of	leuco	cytes	by G	iemsa	a stain	•			
	8.	Sep	aratio	on of	leuco	cytes	by d	extran	meth	nod.						
	9.	Der cryc	nonst opres	ratioi ervati	n of P ion.	hago	cytos	is of l	atex b	beads	and t	their				
	10	. Sep cryo	aratic opres	on of ervati	monc ion.	onucle	ear ce	lls by	Ficol	ll-Hyj	paque	e and t	heir			

- 11. Demonstration of ELISPOT.
- 12. Demonstration of FACS.

Course code	MSMB-253
Category	Applied Sciences
Course title	Bioinformatics Lab.
Scheme and	CR L T P
Credits	2 0 0 4
Pre-requisites (if any)	Nil
Objectives	The aim of this course is to provide practical training in bioinformatics methods including accessing major public sequence databases, use of different computational tools to find sequences, analysis of protein and nucleic acid sequences by various software packages.
Outcomes	 On completion of this course, studentsshouldbeableto: 1. Describe contents and properties of most important bioinformatics databases; 2. Perform text- and sequence-based searches and analyze and discuss results in light of molecular biological knowledge;

				 3. Explain major steps in pairwise and multiple sequeralignment, explain principle and execute pairwise sequeralignment by dynamic programming; 4. Predict secondary and tertiary structures of protein sequences 											equence equence ces.
	P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	P 0 9	P 0 10	PO 11	P 0 12	PSO 1	PSO 2	PSO 3
CO 1	2	2	2	1	3	2	2	1	2	1	2	3	1	2	1
CO 2	2	1	1	3	3	1	2	1	-	1	1	1	2	1	2
CO 3	2	1	2	1	-	2	-	3	1	2	2	2	2	2	1
CO 4	2	1	2	1	-	2	-	3	1	2	2	2	2	2	1
Avera		_	_			_	_		_						
ge	2.0	1.3	1.8	1.5	1.5	1.8	1.0	2.0	1.0	1.5	1.8	2.0	1.8	1.8	1.3
Evnonin	ant	datai	a												

Experiment details

1. Using NCBI and Uniprot web resources

2. Introduction and use of various genome databases.

3. Sequence information resource: Using NCBI, EMBL, Genbank, Entrez, Swissprot/ TrEMBL, UniProt.

4. Similarity searches using tools like BLAST and interpretation of results.

5. Multiple sequence alignment using ClustalW.

6. Phylogenetic analysis of protein and nucleotide sequences.

7. Use of gene prediction methods (GRAIL, Genscan, Glimmer).

8. Using RNA structure prediction tools.

9. Use of various primer designing and restriction site prediction tools.

10.Use of different protein structure prediction databases (PDB, SCOP, CATH).

11. Construction and study of protein structures using Deepview/PyMol.

12. Homology modelling of proteins.

13.Use of tools for mutation and analysis of the energy minimization of protein structures.

14.Use of miRNA prediction, designing and target prediction tools.

SEMESTER-III

Course code	MSM	B -301									
Category	Applied Sciences										
Course title	Industrial and Food Microbiology CR L T P										
Scheme and	CR	L	Т	Р							
Credits	4	4	0	0							
Pre-requisites (if any)	Nil			I							
Objectives	The indus	objecti trial an	ve of d food i	the co microbi	urse is to unde ology processes.	rstandthe	basics of				
Outcomes	On co 1 2. 3.0 4.	mpletic Learn Gain Microo Gain k produ Know used in	on of thi about the knowled organism nowledg acts. the mi n food in	s cours ne diffe ed and r edge ns in fo ge abou crobial ndustrie	e,studentsshouldt erent types of fe microbiological p of significance od. at microbiology of quality control es.	beableto: rmentatior rocesses in and ac of milk and and quali	n processes, volved. ctivities of d fermented ty schemes				
	1						1				
S. No.	Unit o	letails					Time Allotted				
Unit-1	Introd of in develo ferme develo	duction dustria opment nters, opment	to in Ily imp , types process s in fer	dustria portant of ormentat	d microbiology: microbes, fermentation ptimization, and ion technology.	Sources strain and recent	6Hrs				
Unit-2	Dow Filtra liquid proce dryin Ferm succe ferme proce	nstrean ation, d ext esses, ag), and nentation essful ess, co entation acts, co esses	m proce centrifug traction, drying d crysta on ec econo ost bre n proce cost asp develo	essing gation, chron (lyo allizatio conomic mically eak do esses, esses, pects o opment	of microbial pro- cell disruption, natography, mo philization and n cs:Basic object viable ferrown for well-ese market potential of various stage including	roducts: liquid- embrane spray tive for mentation stablished of the es in the effluent	8Hrs				

		treatment													
				D		-4:		-4 1	Л:	1.1.1			1	_	
				P	roau	ction	aspe	ects: 1	viicro	00121	strain	s, su	DStrate:	s,	
				st		imp 	oroven	nent,	110 110	w (nagrai	ns,	produc	21	
				op	5t1m12	zatior	i, and	1 a	pplic	ation	S 01	I 11	ndustria		
				al	cono.	I (e	thano	l an	а b	utanc)), a			ls	
Unit-3				(1)	ysine	, 1	pneny	lalan	ine,	tryp	tophar	1), ar	111010110	^{2S} 8H	rs
				(C	epna.	iospo	rins,	tetrac	yclin	es, p	olyen	es), (enzyme	2S	
				ar		1mmo	$\frac{1}{1}$		enzyn	nes,	SCF	, n		al	
				po	olyesi	ters,	D10SU	irtacta	ants,	a 	na	reco	mbinar	nt	
				pr	oduc	ts (11	isulin,	som	atosta	atin,	thaum	hatin)	•		
				M	icrob	iolog	y of	food	ds: V	'egeta	ables,	fruit	s, mil	k,	
Unit-4		fermented and non-fermented milk products, fresh											sh 6H	rs	
		meats, poultry and non-dairy fermented foods.													
		Microbial spoilage of foods													
				Fo	od	pres	ervati	on:	Cl	hemio	cal, j	physi	cal ar	nd	
Unit-5				D10	logic rmor	cal m	ethod	S.		Drod	uction	of	nilk or		Irc
Ome-5				mi	lk pr	oduc	ts. pla	ant b	ased	prod	ucts.	fish	product	IL UL	11.5
				me	at p	roduc	ts and	food	l bev	erage	es.				
				Fo	od-b	orne	disea	ises							
	-								-	-		-			
	P O	РО	PO	PO	РО	PO	РО	PO	P O	P O	РО	P O	PSO	PSO	PSO
	P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	P 0 9	P 0 10	PO 11	P 0 12	PSO 1	PSO 2	PSO 3
<u>CO 1</u>	P O 1 2	PO 2 2	PO 3 2	PO 4 1	PO 5 3	PO 6 2	PO 7 2	PO 8	P O 9 2	P 0 10 1	PO 11 2	P O 12 3	PSO 1	PSO 2 2	PSO 3
CO 1 CO 2 CO 3	P O 1 2 2 2 1 1 2 1	PO 2 2 1 2	PO 3 2 1 2	PO 4 1 3	PO 5 3 3	PO 6 2 1 2	PO 7 2 2 1	PO 8 1 2 2	P 0 9 2 1	P O 10 1 1 2	PO 11 2 1 2	P 0 12 3 1 2	PSO 1 2 2	PSO 2 1 2	PSO 3 1 2 2
CO 1 CO 2 CO 3 CO 4	P O 1 2 2 1 2 1 2	PO 2 2 1 2 1	PO 3 2 1 2 2 2	PO 4 1 3 1 1	PO 5 3 3 1 1	PO 6 2 1 2 2 2	PO 7 2 2 1 1	PO 8 1 2 2 3	P O 9 2 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	P O 10 1 1 2 2 2	PO 11 2 1 2 2	P O 12 3 1 2 2 2	PSO 1 2 2	PSO 2 2 1 2 2	PSO 3 1 2 2 1
CO 1 CO 2 CO 3 CO 4 Avera	P O 1 2 2 1 2 1 2	PO 2 1 2 1	PO 3 2 1 2 2 2	PO 4 1 3 1 1 1	PO 5 3 1 1	PO 6 2 1 2 2 2	PO 7 2 2 1 1	PO 8 1 2 3	P O 9 2 1 1 1 1	P 0 10 1 2 2	PO 11 2 1 2 2	P 0 12 3 1 2 2	PSO 1 2 2 2	PSO 2 2 1 2 2 1 2 2 1	PSO 3 1 2 1 1 2 1
CO 1 CO 2 CO 3 CO 4 Avera ge	P O 1 2 2 1 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO 2 1 2 1 1 1.5	PO 3 2 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO 4 1 3 1 1 1.5	PO 5 3 1 1 2.0	PO 6 2 1 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PO 7 2 1 1 1.5	PO 8 1 2 2 3 2.0 1	P O 9 2 1 1 1 1 1 1 1.3 1.3 1 <th1< th=""> 1 1 1<th>P O 10 1 1 2 2 1.5</th><th>PO 11 2 1 2 2 1 2 1 3 2 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3</th><th>P O 12 3 1 2 2 2 2.0 2.0</th><th>PSO 1 1 2 2 2 1.8</th><th>PSO 2 2 1 2 2 1 2 2 1.8</th><th>PSO 3 1 2 2 1 1.5 1.5</th></th1<>	P O 10 1 1 2 2 1.5	PO 11 2 1 2 2 1 2 1 3 2 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3	P O 12 3 1 2 2 2 2.0 2.0	PSO 1 1 2 2 2 1.8	PSO 2 2 1 2 2 1 2 2 1.8	PSO 3 1 2 2 1 1.5 1.5
CO 1 CO 2 CO 3 CO 4 Avera ge	P O 1 2 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1	PO 2 1 2 1 1 1.5	PO 3 2 1 2 2 1 2 1.8 1.8	PO 4 1 3 1 1 1 1.5	PO 5 3 1 1 2.0	PO 6 2 1 2 2 1.8 1.8	PO 7 2 1 1 1.5	PO 8 1 2 2 3 2.0	P 0 9 2 1 1 1 1 1.3	P 0 10 1 2 2 1.5	PO 11 2 1 2 2 1.8	P 0 12 3 1 2 2 2 2.0	PSO 1 1 2 2 2 1.8 ustrial	PSO 2 2 1 2 2 1.8 Micro	PSO 3 1 2 1 1.5 biology
CO 1 CO 2 CO 3 CO 4 Avera ge	P O 1 2 2 1 2 1 2 1 2 1 1.8 1.8 1.8	PO 2 1 2 1 1 1.5	PO 3 2 1 2 2 1.8	PO 1 3 1 1 1 1 1 1.5	PO 5 3 1 1 2.0 Biot	PO 6 2 1 2 2 1.8 techn W	PO 7 2 1 1 1.5 0logy	PO 8 1 2 2 3 2.0 : A	P 0 9 2 1 1 1 1 1 .3	P 0 10 1 2 2 1.5 Boo	PO 11 2 1 2 2 1.8 0k	P 0 12 3 1 2 2 2 2.0 5 Ind	PSO 1 2 2 1.8 ustrial Panima	PSO 2 2 1 2 2 1.8 Micro a Pul	PSO 3 1 2 2 1 1.5 biology
CO 1 CO 2 CO 3 CO 4 Avera ge	P O 1 2 2 1 2 1 2 1 2 1 1 2 1	PO 2 1 2 1 1 1.5	PO 3 2 1 2 2 1.8	PO 1 3 1 1 1 1.5	PO 5 3 1 1 2.0 Biot by Cor	PO 6 2 1 2 2 1.8 techn W.	PO 7 2 1 1 1.5 0logy Cru ion, N	PO 8 1 2 2 3 2.0 2.0 : A legero	P 0 9 2 1 1 1 1 1 1.3 Text & 2 Delhi	P 0 10 1 2 2 1.5 Boo A.	PO 11 2 1 2 1 2 1.8 ok of Crueg galore.	P 0 12 3 1 2 2 2 2.0 5 Ind er, 200	PSO 1 2 2 1.8 Ustrial Panima	PSO 2 2 1 2 2 1.8 Micro a Pul	PSO 3 1 2 2 1 1.5 biology blishing
CO 1 CO 2 CO 3 CO 4 Avera ge	P O 1 2 2 1 2 1 1 2 1 1.8	PO 2 2 1 2 1 1 1.5	PO 3 2 1 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1	PO 4 1 3 1 1.5 1.5 2.	PO 5 3 1 1 2.0 Biot by Cor Prin	PO 6 2 1 2 2 1.8 techn W. porat ciples	PO 7 2 1 1 1.5 0logy Cru ion, N s of	PO 8 1 2 2 3 2.0 3 E. A 1 Degeror 1 New 1 Ferrm 1	P O 9 2 1 1 1 1 1 1 1 3 7 2 1 1 1 1 1 1 1 3 7 2 1 1 1 3 7 2 1 1 1 3 7 2 1 1 3 7 2 1 1 3 7 2 1 1 3 7 2 1 1 3 7 2 1 1 3 7 2 1 1 3 7 2 1 1 3	P 0 10 1 2 2 1.5 Boo A. /Bang	PO 11 2 1 2 2 1.8 0k of Crueg galore, Techn	P 0 12 3 1 2 2 2 2.0 5 Ind er, , 200 ology	PSO 1 1 2 2 2 1.8 Ustrial Panima 0. V by H	PSO 2 2 1 2 1 2 1 3 1.8 Microo Pul P.F. St	PSO 3 1 2 1 1.5 biology blishing
CO 1 CO 2 CO 3 CO 4 Avera ge	P O 1 2 2 1 2 1 2 1 2 1 1 2 1 1 3 1	PO 2 2 1 2 1 1 1.5	PO 3 2 1 2 2 1.8	PO 1 3 1 1 1 1.5 1. 2.	PO 5 3 3 1 1 2.0 Biot by Corr Prin W.	PO 6 2 1 2 2 1.8 techn W. porat ciples Whi	PO 7 2 1 1 1.5 Cru ion, N s of itaker	PO 8 1 2 3 2.0 : A negera Vew 1 Ferm &S.	P O 9 2 1 1 1 1 1 1 1 3 7 2 1 1 1 1 1 1 1 1 3 7 2 1 1 1 1 1 1 1 3 7 2 1 1 1 3 7 2 1 1 1 3 7 2 1 1 1 3 7 2 1 1 1 3 7 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 1 3 2 1 1 1 3 2 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	P 0 10 1 2 2 1.5 Boo A. /Bang ion	PO 11 2 2 1.8 0k of Crueg galore, Techn Adity	P O 12 3 1 2 2 2 2.0 2.0 5 Ind er, , 200 ology a Bo	PSO 1 1 2 2 1.8 ustrial Panima 0. y by H pocks (PSO 2 2 1 2 1 2 1 1 2 1 2 1.8 Microo a Pul P.F. St P.F. St P) Lto P.F. St	PSO 3 1 2 1 1.5 biology blishing anbury, d., New
CO 1 CO 2 CO 3 CO 4 Avera ge	P O 1 2 2 1 2 1 2 1 2 1 1 2 1 1 3 1	PO 2 2 1 2 1 1 1.5	PO 3 2 1 2 2 1.8	PO 1 3 1 1 1 1.5 1. 2.	PO 5 3 3 1 1 2.0 Bior by Cor Prin W. Dell	PO 6 2 1 2 2 1.8 4 techn W. porat ciples Whi 1	PO 7 2 1 1 1.5 0logy: Cru ion, N s of itaker 997.	PO 8 1 2 2 3 2.0 3 2.0 3 Example 1 1 PO 8 PO 8 PO 8	P O 9 9 2 1 1 1 1 1 1 1 1 3 7 0 1 1 1 1 1 1 1 1 3 2 1 1 1 1 1 1 1 3 2 1 1 1 3 2 2 1 1 1 3 2 1 1 1 3 2 2 1 1 3 2 2 1 1 3 3 2 2 1 3 2 2 1 3 2 2 2 1 3	P 0 10 1 2 2 1.5 Boo A. /Bang ion /	PO 11 2 1 2 2 1.8 ok of Crueg galore, Techn Adity	P 0 12 3 1 2 2 2 2.0 5 Ind er, , 200 ology a Bo	PSO 1 1 2 2 2 1.8 ustrial Panima 0. y by H pooks (PSO 2 1 2 1 2 2 1.8 Micro a Pul P.F. St P) Lto	PSO 3 1 2 1 1.5 biology blishing canbury, d., New
CO 1 CO 2 CO 3 CO 4 Avera ge	P 0 1 2 2 1 2 1 2 1.8	PO 2 2 1 2 1 1.5	PO 3 2 1 2 2 1.8	PO 4 1 3 1 1 1 1 1. 1. 2. 3.	PO 5 3 1 1 2.0 Biot by Cor Prin W. Dell Mod	PO 6 2 1 2 2 1.8 techn W. porat ciples Whi hi, 19 dern	PO 7 2 1 1 1.5 0logy Cru ion, N s of itaker 997. Indus	PO 8 1 2 2 3 2.0 2.0 2.0 2.0 5 Ferm &S.	P O 9 2 1 1 1 1 1 1 1 S Celhi entat J. H	P 0 10 1 2 2 1.5 Boo A. /Bang ion [all,	PO 11 2 1 2 2 1.8 Crueg galore, Techn Adity	P O 12 3 1 2 2 2 2 2 2.0 5 Ind er, , 200 ology a Bo	PSO 1 1 2 2 2 1.8 ustrial Panima 00. by H pooks (iotechr	PSO 2 1 2 1 2 1.8 Micro a Pul P.F. St P) Lto nology	PSO 3 1 2 1 1.5 biology blishing anbury, d., New by N.
CO 1 CO 2 CO 3 CO 4 Avera ge	P 0 1 2 2 1 2 1 2 1.8	PO 2 2 1 2 1 1 1.5	PO 3 2 1 2 2 1.8	PO 4 1 3 1 1 1 1 1.5 1. 2. 3.	PO 5 3 1 1 2.0 Biot by Cor Prin W. Dell Mod Oka	PO 6 2 1 2 2 1.8 techn W. porat ciples Whi hi, 19 dern afer,	PO 7 2 1 1 1.5 0logy: Cru ion, N s of itaker 997. Indus Scient	PO 8 1 2 3 2.0 2.0 Ferm &S. strial ific I	P O 9 2 1 1 1 1 1 1 1 S Celhi entat J. H Micr Publis	P 0 10 1 2 2 1.5 Boo A. /Bang ion fall, shers,	PO 11 2 1 2 2 1.8 0k of Crueg galore, Techn Adity logy Enfie	P O 12 3 1 2 2 2 2.0 2.0 5 Ind er, , 200 ology a Bo & B eld, U	PSO 1 1 2 2 2 1.8 ustrial Panima 0. y by I poks (iotechr USA., 2	PSO 2 2 1 2 1 2 2 1.8 Micro A Pul P.F. St Pul P.F. St Pul P.F. St Pul P.F. St Pul P.O.T. Pul	PSO 3 1 2 2 1 1.5 biology blishing canbury, d., New by N.
CO 1 CO 2 CO 3 CO 4 Avera ge	P 0 1 2 1 2 1 2 1 <t< th=""><th>PO 2 2 1 2 1 1.5</th><th>PO 3 2 1 2 2 1.8</th><th>PO 4 1 3 1 1 1 1 1. 1. 2. 3. 4. 4.</th><th>PO 5 3 1 1 2.0 Biot by Cor Prin W. Dell Mod Oka Fern</th><th>PO 6 2 1 2 2 1.8 techn W. porat ciples Whi hi, 19 dern ufer, mentat</th><th>PO 7 2 1 1 1.5 0logy Cru ion, N s of itaker 997. Indus Scient tion N</th><th>PO 8 1 2 2 3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0</th><th>P O 9 2 1 1 1 1 1.3 Text & 2 Delhi entat J. H Micr Publis biolog</th><th>P 0 10 1 2 2 1.5 Boo A. /Bang ion /Bang ion /Bang ion /Bang gy au</th><th>PO 11 2 1 2 2 1.8 0k of Crueg galore, Techn Adity logy Enfic</th><th>P O 12 3 1 2 2 2 2.0 2.0 5 Ind er, , 200 ology a Bo eld, U otech</th><th>PSO 1 1 2 2 2 1.8 ustrial Panima 0. y by I ooks (iotechr USA., 2 nology</th><th>PSO 2 2 1 2 1 2 1 1 2 1 2 1 3 Micro a Pul 2 P.F. St 5 P) Lto 1000gy 2007. by El</th><th>PSO 3 1 2 2 1 1.5 biology blishing canbury, d., New by N. Mansi</th></t<>	PO 2 2 1 2 1 1.5	PO 3 2 1 2 2 1.8	PO 4 1 3 1 1 1 1 1. 1. 2. 3. 4. 4.	PO 5 3 1 1 2.0 Biot by Cor Prin W. Dell Mod Oka Fern	PO 6 2 1 2 2 1.8 techn W. porat ciples Whi hi, 19 dern ufer, mentat	PO 7 2 1 1 1.5 0logy Cru ion, N s of itaker 997. Indus Scient tion N	PO 8 1 2 2 3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	P O 9 2 1 1 1 1 1.3 Text & 2 Delhi entat J. H Micr Publis biolog	P 0 10 1 2 2 1.5 Boo A. /Bang ion /Bang ion /Bang ion /Bang gy au	PO 11 2 1 2 2 1.8 0k of Crueg galore, Techn Adity logy Enfic	P O 12 3 1 2 2 2 2.0 2.0 5 Ind er, , 200 ology a Bo eld, U otech	PSO 1 1 2 2 2 1.8 ustrial Panima 0. y by I ooks (iotechr USA., 2 nology	PSO 2 2 1 2 1 2 1 1 2 1 2 1 3 Micro a Pul 2 P.F. St 5 P) Lto 1000gy 2007. by El	PSO 3 1 2 2 1 1.5 biology blishing canbury, d., New by N. Mansi
CO 1 CO 2 CO 3 CO 4 Avera ge	P 0 1 2 2 1 2 1 2 1 1 2 1.8	PO 2 2 1 2 1 1.5	PO 3 2 1 2 2 1.8	PO 4 1 3 1 1 1 1 1. 1. 2. 3. 4. 4.	PO 5 3 1 1 2.0 Biot by Cor Prin W. Dell Moo Oka Ferm & I	PO 6 2 1 2 2 1.8 techn W. porat ciples Whi hi, 19 dern afer, anentar Bryce	PO 7 2 1 1 1.5 0logy Cru ion, N s of itaker 997. Indus Scient tion N s, Tay	PO 8 1 2 2 3 2.0 2.0 2.0 2.0 Ferm &S. strial ific H Aicrollor &	P O 9 2 1 1 1 1 1 1.3 Text & A Delhi entat J. H Micr Publis biolog z Fra	P O 10 1 2 2 1.5 Boo A. /Bang ion / [all, shers, gy anncis,	PO 11 2 1 2 2 1.8 0k of Crueg galore, Techn Adity logy Enfic nd Bic Lond	P O 12 3 1 2 2 2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	PSO 1 1 2 2 1.8 ustrial Panima 00. by H books (iotechr USA., 2 nology hiladelj	PSO 2 1 2 1 2 2 1.8 Micro a Pul P.F. St P) Lto nology 2007. by El phia, 1	PSO 3 1 2 1 1.5 biology blishing anbury, d., New by N. Mansi 999.
CO 1 CO 2 CO 3 CO 4 Avera ge	P O 1 2 2 1 2 1 1 2 1 1.8	PO 2 2 1 1 1.5	PO 3 2 1 2 2 1.8	PO 4 1 3 1 1 1.5 1. 2. 3. 4. 5.	PO 5 3 1 1 2.0 Biot by Cor Prin W. Dell Mod Oka Fern & I Fern	PO 6 2 1 2 2 1.8 techn W. porat ciples Whi hi, 19 dern tfer, fer, anentat	PO 7 2 1 1 1.5 0logy: Cru ion, N s of itaker 997. Indus Scient tion N s, Tay tation	PO 8 1 2 2 3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	P O 9 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P O 10 1 2 2 1.5 Boo A. /Bang ion fall, shers, gy an ncis, nolog	PO 11 2 1 2 1.8 0k of Crueg galore, Techn Adity logy Enfic ad Bic Lond gy b	P O 12 3 1 2 2 2 2.0 2 2.0 2 2.0 3 3 1 2 2 2.0 2 2.0 3 3 1 2 2 2.0 2 3 1 2 2 2.0 3 3 1 2 2 2.0 3 3 1 3 1 3 1 2 2 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	PSO 1 1 2 2 1.8 ustrial Panima 0. y by I ooks (iotechr USA., 2 nology hiladelj D.P.	PSO 2 1 2 1 2 2 1.8 Micro a Pul P.F. St P) Lto pology 2007. by El phia, 1 Ward,	PSO 3 1 2 1 1.5 biology blishing anbury, d., New by N. Mansi 999. Open
CO 1 CO 2 CO 3 CO 4 Avera ge	P O 1 2 2 1 2 1 1 2 1.8	PO 2 2 1 2 1 1.5	PO 3 2 1 2 2 1.8	PO 4 1 3 1 1	PO 5 3 1 1 2.0 Biot by Cor Prin W. Dell Mod Oka Fern & I Fer Uni	PO 6 2 1 2 2 1.8 techn W. porat ciples Whi hi, 19 dern ufer, nentau Bryce rment	PO 7 2 1 1 1.5 0logy Cru ion, N s of itaker 997. Indus Scient tion N c, Tay tation	PO 8 1 2 2 3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	P O 9 2 1 1 1 1 1.3 Text & A Delhi entat J. H Micr Publis biolog z Fra otech filton	P O 10 1 2 2 1.5 Boo A. /Bang ion /Bang ion /Bang ion /Bang ion /Bang ion /Bang ion /Bang ion /Bang ion / all, / Boo A.	PO 11 2 1 2 1.8 0k of Crueg galore, Techn Adity logy Enfie d Bid Lond gy b ynes,	P O 12 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 1 2 2 2 2 2 2 3 1 4 1 5 1 6 1 1 1 2 2 3 1 3 1 4 1 5 1 4 1	PSO 1 1 2 2 1.8 ustrial Panima 0. / by I ooks (iotechr USA., 2 nology hiladelj D.P. 1989	PSO 2 1 2 1 2 1.8 Micro a Pul P.F. St P) Lto nology 2007. by El phia, 1 Ward,	PSO 3 1 2 1 1.5 biology blishing anbury, d., New by N. Mansi 999. Open

|--|

Course code	MSM	B -302								
Category	Applied Sciences									
Course title	Biosta	atistics								
Scheme and	CR	L	Т	P						
Credits	3	3	0	0						
Pre-requisites (if any)	Nil									
Objectives	The essen	objectiv itial con	ve of th ntents o	nis cou of statis	rse	s is to s to stu	give c udents	conce	ptual e	xposure of
Outcomes	On co 1. 2. 3. re 4. an	mpletion Learn analy Demon data v Demo sults of Apply d Medi	on of th data c sis. strate s when or nstrate statisti basic ical Sci	is cour collecti skills i nly a pa skills cal ana statistic ences.	rse, on, n c art in alys cal	studer orga drawin of the interp sis, ora conce	ntsshou anizatio g infe data is reting ally and epts co	Idbea on, s rence obse and d in w	ableto: summa es abou erved. commu vriting. only us	rization and it a body of inicating the ed in Health
S. No.	Unit	details								Time Allotted
Unit-1	Meas disper tender variab screer distrib pie di media of dis coeffi	ures rsion:E ncy an ole, pan ning ar oution, iagram, iagram, n, moc persior cient of	of Basic and dis cameter nd repr tabulat cumu de, quan n: range f variati	centr terms, persion , prima tesentat tion, b lative rtiles a e, varia	ral r n: ary tion bar fre- anc	te neasur Popu and n of o diagra quenc perce e, sta	endence res o llation, second data. I am, h y curv entiles, ndard	y f ce sar lary Frequ istogr ves. N meas devia	and entral nple, data, ency cams, vlean sures ation,	7 Hrs
Unit-2	Prob event proba event cond	ability ts, eq ability ts. A itional	and ually (frequ ddition prob	distrik likely lency and pability	out e ap l	ions: events. oproac multi exam	San Def ch), i iplicati nples	nple finitio ndepe on ber	space, on of endent rules, noulli,	5 Hrs

Unit-3		Methods of sampling:Methods of sampling:Useof random numbers to generate simple randomsamples with replacement and without replacement.Sampling distribution and standard deviation ofsample mean.Stratified sampling and itsadvantages.												e n f f s	rs
Unit-4				H cr pr of wl ind an	ypoth itical oport nor hen deper alysis	hesis regi ion, e mal j variar ndenc s of v	testin on, a equalit popula nces a e. P-v arianc	g: H nd e y of j utions ure un alue o e.	ypoth rror propo whe nknov of the	nesis probartions en va wn. (e stati	testing abilitie s, equa riance Chi-sq stic. In	g: Hy es. T ality c knc uare ntrodu	pothesis ests fo of mean own an test fo uction t	s, or us d 8 H or o	rs
	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	P O 9	P 0 10	PO 11	P 0 12	PSO 1	PSO 2	PSO 3
CO 1	2	2	2	1	3	2	2	1	2	1	2	-	1	2	1
CO 2	3	1	1	2	3	1	2	2	1	1	1	1	2	-	2
CO 2	1	3	2	1	-	2	1	2	-	2	2	2	1	2	2
0.05															
CO 3 CO 4	2	1	2	1	1	2	1	2	1	2	2	2	2	2	1
CO 4 CO 4 Avera ge	2 2.0	1 1.8	2 1.8	1 1.3	1 1.8	2 1.8	1 1.5	2 1.8	1 1.0	2 1.5	2 1.8	2 1.3	2 1.5	2 1.5	1 1.5

Course code	MSMB -303								
Category	Appli	ed Sci	ences						
Course title	Medic	cal Mi	crobiol	ogy					
Scheme and	CR	L	Т	Р					
Credits	4	4	0	0					
Pre-requisites (if any)	Nil	1							
Objectives	To in releva of ba with i	ntroduc ance of cteria, infectio	ce basi f clinica viruse ous dise	ic prind al disea s and c eases in	ciples and applic se. It covers all bi- other pathogens re humans.	cation ology elated			
Outcomes	On course	,stude	comp ¹ ntsshou	letion Ildbeab	of leto:	this			

	 Gain information about the medical microbiology and gain on medically important micro-or Gain knowledge of morphole characteristics, biochemic epidemiology, laboratory diag bacterial pathogens. Gain knowledge on Water bor caused by bacteria, Nosocomial Gain knowledge on chemotherapeutic agents and the action including alternatives of and Alternative and Commedicine. 	concepts of n knowledge organisms. ogy, cultural al tests, nosis etc of ne infections l infections. various heir mode of of antibiotics omplimentary
S. No.	Unit details	Time Allotted
Unit-1	Human pathogens, Infection and Transmission:Human pathogens: Normal microbial flora of human body and its significance, tissue tropism. Emerging andreemerging pathogens: Viral, bacterial, protozoan and fungal pathogens. Infection and transmission: Entry of pathogen into human host – portals of entry. Virulence factors and their role in breaching host defense, mechanism of microbial adhesion, colonization and invasion of mucous membranes of respiratory, enteric and urinogenital tracts. G protein signaling-Establishment, spreading, tissue damage and anti-phagocytic factors; Evasion of host defense, non-specific host defense, toxigenesisbacterial toxins and its types, Quorum sensing in Staphylococcus pyogenes. Modes of transmission and factors influencing. Communicable diseases; Nosocomial and community infections and their control.	6 Hrs
Unit-2	Bacterial and Protozoan diseases: Study of diseases caused by pathogenic bacteria: pathogenicity, laboratory diagnosis, epidemiology and control	10 Hrs

	measures– Streptococcus Staphylococcus, Shigellla, Salmonella, Neisseria, Corynebacterium, Vibrio, Yersinia, Haemophilus, Mycobacterium. Spirochetes-Trepornema ,Chlamydiae, Mycoplasma. Protozoan diseases-malaria, leishmaiasis and filariasis.	
Unit-3	Fungaldiseases: Aetiology,clinicalsymptoms,laboratorydiagnosisandtreatmentofsuperficialinfections(dermatomycoses):Epidermophyton,MicrosporumandTrichophyton;Madurafoot;Subcutaneousmycoses:SporotrichosisandSystemicmycosis:Blastomycosis,Coccodiodomysis,Candidiasis,Opportunisticmycoses:	10 Hrs
Unit-4	Viral diseases:Etiology, clinical symptoms, laboratory diagnosis and treatment: Pox virus, Herpes virus (HSV I & II) Varicella- zoster, Adenovirus, Picorna virus, Orthomyxoviruses (Mumps and Measles), Paramyxoviruses (Mumps and Measles), Rhabdoviruses, Hepatitis viruses (HAV, HBV HCV, HDV), H1N1, Oncogenic viruses (HPV, epstein-barr virus, CMV), HIV, Arboviruses (Dengue, Encephalitis, chikungunya, rubella). Prion infection- Mad Cow, CJD, Kuru.	8 Hrs
Unit-5	Antimicrobial agents: Classification of antimicrobial agents, Mechanism of drug action – antibacterial (Bacteriostatic and bactericidal) antifungal and antiprotozoans. Methods of testing drug sensitivity (in vitro and in vivo), antibiotic assay in body fluids. Mechanism of drug resistance and dissemination of multi drug resistance. Probiotics as therapeutic agents. Brief account of vaccines (conventional and recombinant) and immunization schedules; Passive prophylactic measures; Interferons. Diagnostic Microbiology:Principles and applications of immuno and molecular diagnostic methods: RID, RIE, Agglutination test; CFT, RIA, ELISA, PCR, DNA finger printing.	8 Hrs

	P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	P 0 9	P 0 10	РО 11	P 0 12	PSO 1	PSO 2	PSO 3
CO 1	2	2	3	1	3	2	1	1	2	1	2	2	1	2	1
CO 2	-	1	1	2	3	1	2	-	1	1	1	1	2	2	2
CO 3	1	1	2	1	2	2	1	2	1	2	2	-	1	2	1
CO 4	2	1	-	1	1	2	1	2	1	-	2	2	2	2	1
Avera	1.3	1.3	1.5	1.3	2.3	1.8	1.3	1.3	1.3	1.0	1.8	1.3	1.5	2.0	1.3
Referen	ices							1. N Jo N 2. A S E 2' 3. E L D 4. N K S N	Alcroi ohn F IcGra Illen chrec d. 60 005. ssent isa A Oelma Iedic tephe Iedic	A loop A loop	gy by rley a ill Scie Willia erger ippinc of dia Shime blisher icrobid Carro Iorse; 07.	Lans nd D ence, am M and S cott M agnoss eld an s, 199 ology oll an Ed.	onald F 2004. I Janda Washin William tic mid Ann 99. by Ge nd Jand 24th;	a and f gton C s & V crobiolo e T. R o. Broo et But McGra	ott and Ed. 6th; Paul C Winn; Vilkins, ogy by odgers; oks and el and aw-Hill

Course code	MSMB -304									
Category	Applied Sciences									
Course title	Intellectual Property Rights, Biosafety and Bioethics									
Scheme and	CR	L	Т	P						
Credits	3	3	0	0						
Pre-requisites (if any)	Nil									
Objectives	The of Th	objective objective nd the evelop o beco o learred o beco o beco esearche iomedia organisme	ves of the ide bas ir impli- ment; me fam a biosaf potechno ome fa a. This ical rese ms, geno	is cour ic know ication iliar w fety and logy an logy an amiliar cours earch to etic mo	rse are: wledge on intellectual property rights s in biological research and product ith India's IPR Policy; d risk assessment of products derived nd regulation of such products; with ethical issues in biological se will focus on consequences of echnologies such as cloning of whole odifications, DNA testing.					

	 On completion of this course, students should be able to: Understand the rationale for and against IPR and patents; Understand why India has adopted an IPR Poli familiar with broad outline of patent regulations; Understand different types of intellectual propert general and protection of products derivations 	especially cy and be y rights in yed from					
Outcomes	 general and protection of products derived for biotechnology research and issues related to application obtaining patents; Gain knowledge of biosafety and risk assessment products derived from recombinant DNA research environmental release of genetically modified organism national and international regulations; Understand ethical aspects related to biological, biomed health care and biotechnology research. 						
S. No.	Unit details	Time Allotted					
Unit-1	Introduction to IPR: Introduction to intellectual property; types of IP: patents, trademarks, copyright & related rights, industrial design, traditional knowledge, geographical indications, protection of new GMOs; International framework for the protection of IP; IP as a factor in R&D IPs of relevance to biotechnology and few case studies; introduction to history of GATT, WTO, WIPO and TRIPS; plant variety protection and farmers rights act; concept of 'prior art': invention in context of 'prior art'; patent databases - country-wise patent searches (USPTO, EPO, India); analysis and report formation.	5 Hrs					
Unit-2	Agreements and Treaties: History of GATT &TRIPS Agreement; Madrid Agreement; HagueAgreement; WIPO Treaties; BudapestTreaty; PCT; Indian Patent Act 1970 & recentamendments	8 Hrs					
Unit-3	Conceptofbiosafety:Biorisk,Hazardouscharacteristics of the agent, Laboratory procedures,Goodlabpractices,Principlesofbiosafety,Biosafetylevelstopersonnel,environmentand	8 Hrs					

				c	community										
Unit-4				I I C a F	Biosa LMOs Comn Ipplic Enviro Risk A	6	Hrs								
Unit-5				I I c ii c	Perce Legalizonfli mplic of bio	, [[5	Hrs								
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	P 0 9	P 0 10	PO 11	P 0 12	PSO 1	PSO 2	PSO 3
CO 1	2	2	3	1	3	2	1	1	2	1	2	2	1	2	1
CO 2	-	1	1	2	3	1	2	-	1	1	1	1	2	2	2
CO 3	1	1	2	1	2	2	1	2	1	2	2	-	1	2	1
CO 4	2	1	-	1	1	2	1	2	1	-	2	2	2	2	1
CO 5	-	1	1	2	3	1	2	-	1	1	1	1	2	2	2
CO 6	1	1	2	1	2	2	1	2	1	2	2	-	1	2	1
Avera															_
ge	1.0	1.2	1.5	1.3	2.3	1.7	1.3	1.2	1.2	1.2	1.7	1.0	1.5	2.0	1.3
Referen	ces				 .3 2.3 1.7 1.3 1.2 1.2 1.2 1.7 1.0 1.5 1 Ganguli, P. (2001). Intellectual Proper Unleashing the Knowledge Economy.New McGraw-Hill Pub. National IPR Policy, Department of Industria Promotion, Ministry of Commerce, G Reference to Intellectual Property Rights La Snow White Publication Oct. Kuhse, H. (2010). Bioethics: an Anthology. M Blackwell.Office of the Controller General Design & Trademarks; Department of Industri Promotion; Ministry of Commerce & Government of India. http://www.ipindia.nic.in Karen F. Greif and Jon F. Merz, Current Cont the Biological Sciences-Case Studies of Policy 										Rights: hi: Tata Policy & Complete (2007). en, MA: Patents, Policy & Industry; ersies in allenges

Course code	MSM	MSMB -305								
Category	Appli	Applied Sciences								
Course title	Nano	biotec	hnology	7						
Scheme and	CR	L	Т	P						
Credits	4	4	0	0						

Pre-requisites (if any)	Nil	
Objectives	The course aims at providing a general and broad introd multi-disciplinary field of nanotechnology. It will fa students with the combination of thetop-down app microelectronics and micromechanics with the bot approach of chemistry/biochemistry; a development creating new and exciting cross-disciplinary research technologies. The course will also give an insight into systems where nanotechnology can be used to imp everyday life.	luction to miliarize roach of tom- up that is fieldsand complete rove our
Outcomes	 On completion of this course, students should be ableto: describe basic science behind the properties of manometre scale, and the principles behind experimental and computational techniques for nanomaterials. 	aterials at advanced studying
S. No.	Unit details	Time Allotted
Unit-1	Introduction to nanobiotechnology: Introduction to Nanobiotechnology; Concepts, historical perspective; Different formats of nanomaterials and applications with example for specific cases; Cellular Nanostructures; Nanopores; Biomolecular motors; Bio-inspired Nanostructures, Synthesis and characterization of different nanomaterials.	5 Hrs
Unit-2	Nano – films: Thin films; Colloidal nanostructures; Self Assembly, Nanovesicles; Nanospheres; Nanocapsules and their characterisation.	5 Hrs
Unit-3	Nano – particles: Nanoparticles for drug delivery, concepts, optimization of nanoparticle properties for suitability of administration through various routes of delivery, advantages, strategies for cellular internalization and long circulation, strategies for enhanced permeation through various anatomical barriers.	5 Hrs
Unit-4	Applicationsof nano – particles: Nanoparticles for diagnostics and imaging (theranostics); concepts of smart stimuli responsive nanoparticles, implications in	5 Hrs

				can	cer	the	rapy,	na	node	vices	fo	or	biosens	sor		
				dev	development.											
Unit-5				National Nat	 Nano – materials: Nanomaterials for catalysis, development and characterization of nanobiocatalysts, application of nanoscaffolds in sythesis, applications of nanobiocatalysis in the production of drugs and drug intermediates. Nano – toxicity: Introduction to Safety of nanomaterials, Basics of nanotoxicity, Models and assays for Nanotoxicity assessment; Fate of nanomaterials in different stratas of environment; Ecotoxicity models and assays; Life Cycle Assessment, containment. 									sis, of rug of 10 nd of nt; nt,) Hrs	
	PO 1	PO 2	РО 3	РО 4	РО 5	PO 6	РО 7	PO 8	Р О 9	P O 10	PO 11	P 0 12	PSO 1	PSO 2	PSO 3	
CO 1	2	1	2	1	1	2	1	2	1	3	2	2	2	2	1	
Avera ge	2	1	2	1	1	2	1	2	1	3	2	2	2	2	1	
Referen	ces				 GeroDecher, Joseph B. Schlenoff, (2003); Multil Films: Sequential Assembly of Nanocomposite Wiley-VCH Verlag GmbH & Co. KGaA David S. Goodsell, (2004); Bionanotechnology from Nature; Wiley-Liss Neelina H. Malsch (2005), Biomedical Nanote CRC Press Greg T. Hermanson, (2013); Bioconjugate Techni Edition); ElsevierRecent review papers in the Nanomedicine 									Iultilay site M logy: anotech echniqu	er Thin aterials, Lessons nology, les, (3rd area_of	

Course code	MSM	B -306										
Category	Applied Sciences											
Course title	Envir	Environmental Microbiology										
Scheme and	CR	L	Т	P								
Credits	4	4	0	0								
Pre-requisites (if any)	Nil											
Objectives	To bioge will micro	know ochem the ba obial ec	and ical pro asic mi cology a	unders ocesses icrobic and the	tand th differer logical j ir theoret	e role of at ecosystems principles, th ical and pract	microbes in . The students e methods in ical use.					
Outcomes	On co 1. 2.	mpletio Unde Gain	on of th rstand t kno	is cour he con wledge	se,studen cepts rela e on	tsshouldbeabl ited to aquatic environmer	eto: microbiology. ntal pollution,					

	bioremediation and role of microbes	
	 3. Understand the basics of soil microbin xenobiotics. 4. Gain knowledge on biodeterioration and microbin treatment methods. 	ology and obial waste
S. No.	Unit details	Time Allotted
Unit-1	Introduction to Microbial Ecology: Evolution of Life on Earth; History and scope of ecology, Concept of autecology, synecology, population, community, biome. Ecological succession. Microorganism in aquatic Environment: major physical and chemical factors (light, temperature, gases, nutrients). Aquatic biota: phytoplankton, zooplankton, benthos, periphyton, macrophytes. Biofilms, Production in lakes, rivers, estuaries and wetlands. Nutrient dynamics in lakes, rivers, estuaries and wetlands.	8Hrs
Unit-2	Aquatic Microbiology: Fresh and marine ecosystem (estuaries, mangroves, deep sea, hydrothermal vents, salt pans, coral reefs). Zonation of water ecosystem; upwelling, eutrophication; food chain in aquatic ecosystems. Role of methanotrophs in ecosystem. Potability of water, microbial assessment of water, water purification. Ground water types and their contamination. Biofilm. Waste treatment: Sewage and effluent treatment; Primary, secondary and tertiary treatment, Solid waste treatment. Solid wastes as sources of energy and food.	7Hrs
Unit-3	Aerobiology: Airspora in different layers of the atmosphere, bioaerosol, assessment of air quality using air sampler based principles of sedimentation, impaction, impingement, suction and filtration. Brief account of transmission of airborne microbes, indoor and outdoor microbial quality. Allergy: Causes and tests for detection of allergy. Endotoxin in air and its hazards. Molecular methods for air quality assessment. Historical development of space microbiology, Life detection	8 Hrs

				r	netho	ods a)) Evid	ence	of n	netabo	olism	(Gull	liver) b)	
				I	Evide	b									
				ł	netero										
				-											
				R	lole o	of									
				X	enobi	otic -	– hyd	rocar	bons,	pest	icides	and	plastic	s.	
TIMA				B	iodet	eriora	tion	of	woo	d,	pulp	and	pape	r;	T
Unit-4				B	iosor	ption	/ b10	accui	mulat	10n	of h	neavy	meta	1. ð H	lrs
				B	ioren	nediat	tion of	of so	oil, a	air a	nd w	ater:	variou	IS	
				m	nethoo	ds, ad	vanta	ges ai	nd dis	sadva	intages	s. Bio	leachin	g	
				0	f iron	, cop	per, go	old an	d ura	nium	•				
				G	loba	l envi	ironm	ental	l pro	blem	s: Ozo	one d	epletion	n,	
				U	V-B,	gree	nhous	e effe	ect an	id aci	id rain	, thei	r impa	ct	
Unit_5				aı	nd bi	otech	nologi	ical a	pproa	aches	for n	nanag	ement.	· 6H	rc
Unit-3				C	ontai	nmen	t of	acio	d m	ine	draina	ige	applyin	g	15
				bi	iomir	ning [with r	efere	nce to	o cop	per ex	tract	ion froi	n	
				10	w gr										
				10	· · · · · · ·		icoj.								
	PO	PO	PO	PO	PO	PO	PO	PO	Р	Р	PO	Р	PSO	PSO	PSO
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	P O	P O	PO 11	P O	PSO 1	PSO 2	PSO 3
<u> </u>	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	P O 9	P O 10	PO 11	P O 12	PSO 1	PSO 2	PSO 3
CO 1 CO 2	PO 1 2 2	PO 2 2	PO 3 3	PO 4	PO 5 3	PO 6 2 2	PO 7 1	PO 8 1 2	P O 9 2	P O 10 1	PO 11 2 2	P O 12 2 2	PSO 1 1 2	PSO 2 2 2	PSO 3
CO 1 CO 2 CO 3	PO 1 2 2 -	PO 2 2 1 1	PO 3 3 -	PO 4 1 2	PO 5 3 1 3	PO 6 2 2 1	PO 7 1 2	PO 8 1 2 -	P O 9 2 1 1	P O 10 1 -	PO 11 2 2 1	P O 12 2 2 1	PSO 1 2 2	PSO 2 2 2 2	PSO 3 1 2
CO 1 CO 2 CO 3 CO 4	PO 1 2 2 - 1	PO 2 1 1 1	PO 3 3 - 1 2	PO 4 1 2 1	PO 5 3 1 3 2	PO 6 2 2 1 2	PO 7 1 1 2 1	PO 8 1 2 - 2	P O 9 2 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	P 0 10 1 - 1 2	PO 11 2 2 1 2	P 0 12 2 2 1 -	PSO 1 2 2 1	PSO 2 2 2 2 2 2	PSO 3 1 1 2 1
CO 1 CO 2 CO 3 CO 4 Avera	PO 1 2 2 - 1	PO 2 1 1 1	PO 3 - 1 2	PO 4 1 2 1	PO 5 3 1 3 2	PO 6 2 2 1 2	PO 7 1 1 2 1	PO 8 1 2 2	P O 9 2 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	P 0 10 1 - 1 2	PO 11 2 2 1 2	P O 12 2 2 1 - -	PSO 1 2 2 1	PSO 2 2 2 2 2	PSO 3 1 1 2 1
CO 1CO 2CO 3CO 4Average	PO 1 2 2 - 1 1.3	PO 2 1 1 1 1.3	PO 3 - 1 2 1.5	PO 4 1 1 2 1 1.3	PO 5 3 1 3 2 2.0 2.0	PO 6 2 2 1 2 1.8 1.8	PO 7 1 1 2 1 1.3	PO 8 1 2 2 1.3	P O 9 2 1 1 1 1 1 1.3<	P 0 10 1 2 1.0	PO 11 2 2 1 2 1 2 1 2 1.8 1.8	P O 12 2 2 1 - 1.3	PSO 1 2 2 1 1.5	PSO 2 2 2 2 2 2 2 2 2 2 2 2.0	PSO 3 1 1 2 1 1 1.3
CO 1 CO 2 CO 3 CO 4 Avera ge	PO 1 2 2 1 1 1.3	PO 2 1 1 1 1.3	PO 3 - 1 2 1.5	PO 4 1 1 2 1 1.3	PO 5 3 1 3 2 2.0 1.	PO 6 2 2 1 2 1 2 Alar Alar	PO 7 1 1 2 1 1.3 Scr	PO 8 1 2 - 2 1.3 ragg	P O 9 2 1 1 1 1 1 1 1 3 (200)	P 0 10 1 2 1.0 5),	PO 11 2 1 2 1 2 1 Envir 1.8	P 0 12 2 1 - 1.3	PSO 1 1 2 1 1.5 ental H	PSO 2 2 2 2 2 2 2.0 Biotech	PSO 3 1 1 2 1 1 1.3 nology,
CO 1 CO 2 CO 3 CO 4 Avera ge	PO 1 2 - 1 1.3	PO 2 1 1 1 1.3	PO 3 - 1 2 1.5	PO 4 1 1 2 1 1.3	PO 5 3 1 3 2 2.0 1.	PO 6 2 2 1 2 1 2 Alar Seccord	PO 7 1 1 2 1 1.3 Scr ond Ec	PO 8 1 2 - 2 1.3 ragg	P O 9 2 1 1 1 1 1 1 1 1 3 (200, or other) 0	P 0 10 1 2 1.0 05), ord U	PO 11 2 1 2 1.8 Envir Universi	P 0 12 2 1 - 1.3 onme sity P	PSO 1 2 1 1.5 ental H ress.	PSO 2 2 2 2 2 2 2.0 3iotech	PSO 3 1 1 2 1 1 1 10 1 11 1 12 1 13 nology,
CO 1 CO 2 CO 3 CO 4 Avera ge	PO 1 2 2 - 1 1.3	PO 2 1 1 1 1.3	PO 3 - 1 2 1.5	PO 4 1 1 2 1 1.3	PO 5 3 1 3 2 2.0 1. 2.	PO 6 2 2 1 2 1 2 1.8 Alar Secco J.,	PO 7 1 1 2 1 1.3 n Scr Pichto	PO 8 1 2 - 2 1.3 ragg lition. el (1	P O 9 2 1 1 1 1 1.3 (200 , Oxfe 2005) 2005) 2005	P 0 10 1 2 1.0 05), ord U), V	PO 11 2 1 2 1.8 Envir Universe Vaste	P 0 12 2 1 - 1.3 onme sity P Ma:	PSO 1 2 2 1 1.5 ental H ress. nageme	PSO 2 2 2 2 2 2 2 2 3 ent Pr	PSO 3 1 1 2 1 1 1
CO 1 CO 2 CO 3 CO 4 Avera ge	PO 1 2 2 1 1 1.3	PO 2 1 1 1 1 1.3	PO 3 - 1 2 1.5	PO 4 1 1 2 1 1.3	PO 5 3 1 3 2 2.0 1. 2.	PO 6 2 2 1 2 1 2 1.8 Alar Secco J., Mun Mun	PO 7 1 2 1 2 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	PO 8 1 2 2 1.3 ragg lition, el (1 , Haz	P 0 9 2 1 1 1 1 1 (200 , Oxfo 2005) ardou	P 0 10 1 2 1.0 05), ord U), V us and	PO 11 2 1 2 1.8 Envir Universe Vaste I Indus	P 0 12 2 1 - 1.3 onme sity P Mar strial,	PSO 1 1 2 1 1.5 ental H ress. nageme Taylor	PSO 2 2 2 2 2 2 2 3 iotech ent Pr r and Fr	PSO 3 1 1 2 1 1 1 1 2 1 1 1.3 nology, actices: ancis.
CO 1 CO 2 CO 3 CO 4 Avera ge	PO 1 2 2 - 1 1.3	PO 2 1 1 1 1 1.3	PO 3 - 1 2 1.5	PO 4 1 1 2 1 1.3	PO 5 3 1 3 2 2.0 1. 2. 3.	PO 6 2 2 1 2 1 2 1.8 Alar Secco J., Mun B.C.	PO 7 1 1 2 1 1.3 Scr pond Ec Pichto icipal Bh	PO 8 1 2 - 2 1.3 agg lition, el (1 , Haz attacl	P 9 2 1 1 1 1.3 (200 , Oxfe 2005) ardou harya	P 0 10 1 2 1.0 05), ord U 0, V us and &	PO 11 2 1 2 1.8 Envir Univers Vaste I Indus R	P O 12 2 1 1.3 onme sity P Mai strial, itu	PSO 1 1 2 1 1.5 ental H ress. nageme Taylor Banerjo	PSO 2 2 2 2 2 2 2 2 3 iotech ent Pr ee	PSO 3 1 1 2 1 1 1 1.3 nology, actices: ancis. (2007) (2007)
CO 1 CO 2 CO 3 CO 4 Avera ge	PO 1 2 2 - 1 1.3	PO 2 2 1 1 1 1 1.3	PO 3 - 1 2 1.5	PO 4 1 1 2 1 1.3	PO 5 3 1 3 2 2.0 1. 2. 3.	PO 6 2 2 1 2 1 2 1.8 Alar Secc J., Mun B.C. Envir Envir	PO 7 1 1 2 1 1.3 n Scr pond Ec Pichte icipal Bh	PO 8 1 2 1.3 ragg lition, el (1 , Haz attacl entalI	P 9 2 1 1 1 1.3 (200 , Oxfe 2005) ardou harya Bioteo	P 0 10 1 2 1.0 05), ord U 0, V us and & chnol	PO 11 2 1 2 1.8 Envir Univers Vaste I Indus R: ogy, C	P O 12 2 1 1.3 onme sity P Mai strial, itu	PSO 1 1 2 2 1 1.5 ental H ress. nageme Taylor Banerje d Press.	PSO 2 2 2 2 2 2 3 iotech ent Pr ee	PSO 3 1 1 2 1 1 1 1.3 nology, actices: ancis. (2007) (2007)
CO 1 CO 2 CO 3 CO 4 Avera ge	PO 1 2 1 1.3 ces	PO 2 2 1 1 1 1 1.3	PO 3 - 1 2 1.5	PO 4 1 1 2 1 1.3	PO 5 3 1 3 2 2.0 1. 2. 3. 4. 4.	PO 6 2 2 1 2 1.8 Alar Seco J., Mun B.C. Envi Shre	PO 7 1 1 2 1 1.3 a Scr ond Ec Pichto icipal Bh aronmo	PO 8 1 2 1.3 ragg lition, el (1 , Haz attacl entall th S	P 0 9 2 1 1 1 1 (200 , Oxfe 2005) ardou harya Biotec ingh	P 0 10 1 2 1.0 05), ord U 0, V us and & chnol (20)	PO 11 2 1 2 1.8 Envir Universe Vaste I Indus R: ogy, C 1), N	P O 12 2 1 - 1.3 onme sity P Mat strial, itu Dxfore Vicro	PSO 1 1 2 1 1.5 ental H ress. nageme Taylor Banerjo d Press. bial D	PSO 2 2 2 2 2 2 2 3iotech ent Pr ee egradat	PSO 3 1 1 2 1 1 1 1.3 nology, actices: ancis. (2007) tion of

Course code	MSM	B -307	,								
Category	Appli	Applied Sciences									
Course title	Vacci	nes									
Scheme and	CR	L	Т	Р							
Credits	4	4	0	0							
Pre-requisites (if any)	Nil										
Objectives	This devel	This course will provide students with an overview of current developments in different areas of vaccines.									
Outcomes	On co	mpletio	on of thi	s cours	e, students should be able to:						

	• Understand fundamental concepts of human immune	system and							
	basic immunology;								
	• Differentiate and understand immune responses in	relation to							
	infection and vaccination;								
	• Understand requirement and designing of different types of								
	vaccines;								
	• Understand importance of conventional and new emerging								
	vaccine technologies.								
	-								
S. No.	Unit details	Time							
		Allotted							
	Fundamentals of immune system:Overview of								
	Immune system; Human Immune system: Effectors								
	of immune system; Innate & Adaptive Immunity;								
Unit-1	Activation of the Innate Immunity; Adaptive	6 Hrs							
	Immunity; T and B cells in adaptive immunity;								
	Immune response in infection; Correlates of								
	protection.								
	Immune response to infection: Protective immune								
	Primary and Secondary immune responses during								
	infaction: Antigen presentation and Bole of Antigen								
	presenting cells: Dendritic cells in immune response:								
Unit-2	Innate immune response: Humoral (antibody	9 Hrs							
	mediated) responses: Cell mediated responses: role of								
	CD4+ and $CD8+$ T cells: Memory responses:								
	Memory and effector T and B cells. Generation and								
	Maintenance of memory T and B cells.								
	Immune regnance to vaccination. Vaccination and								
	immune response to vaccination: vaccination and								
	Modulation of immune responses: Induction of Th1								
	and Th2 responses by using appropriate adjuvents								
	and iniz responses by using appropriate adjuvants								
Unit-3	Linesomel and Microperticles as delivery systems:	8 Hrs							
	Champleines and autobiness Bala of soluble								
	madiators in vaccination. Oral immunization and								
	Mucosal Immunity								
	wideosai miniminity.								
	Vaccine types & design: History of vaccines,								
Unit-4	Conventional vaccines; Bacterial vaccines; Viral	3 Hrs							
	Vaccines; Vaccines based on routes of administration:								

parenteral, oral, mucosal; Live attenuated and										nd					
				ina	inactivated vaccine; Subunit Vaccines and Toxoids;										
	Peptide Vaccine.														
Unit-5	 Vaccine technologies: New Vaccine Technologies; Rationally designed Vaccines; DNA Vaccination; Mucosal vaccination; New approaches for vaccine delivery; Engineering virus vectors for vaccination; Vaccines for targeted delivery (Vaccine Delivery systems); Disease specific vaccine design: Tuberculosis Vaccine; Malaria Vaccine; HIV/AIDS vaccine; New emerging diseases and vaccine needs (Ebola, Zika). 										s; n; ne n; ry 4 H n: OS ds	Irs			
	PO 1	PO 2	PO 3	РО 4	O PO PO PO P P PO P PO P PO P PO O PO PSO PSO								PSO 2	PSO 3	
CO 1	2	2	3	1	3	2	1	1	2	1	2	2	1	2	1
CO 2	2	1	1	1	1	-	1	2	1	1	2	2	2	2	1
CO 3	1	1	1	2	3	1	2	-	1	1	1	1	2	-	2
CO 4	1	1	2	1	2	2	1	2	1	2	2	2	1	2	1
Avera ge	1.5	1.3	1.8	1.3	2.3	1.3	1.3	1.3	1.3	1.3	1.8	1.8	1.5	1.5	1.3
Referen	ces				1. 2. 3. 4.	Janev J. (20 and E Kindt (2013 Kauft Wein Journ Immu Opini review	vay, C 005). I Diseaso t, T. J 3). Kul mann, heim: hal Art inolog ion in w of v	2. A., mmu e. US J., Os by Im S. 1 Wile ticles gy, A n Im raccin	Traveno B A: G borne H. (2 y-VC (rele nnua munc es.Na	ers, F iolog arland e, B. ology 2004) CH. vant 1 Re ology ature;	P., Wa y: the d Scie A., C v. New Nov issues view , Nat Wile	lport, Imm nce P foldst Yorl el V of V ure y-Lis	M., & une Sys ub. oy, R. Z k: W.H. accinati m: Ann ficrobic Immune s	Shlomc stem in A., &K Freem on Str ual Rev ology, ology,	hik, M. Health Luby, J. an. ategies. view of Current Expert

Course code	MSM	IB-351											
Category	Appli	Applied Sciences											
Course title	Indus	Industrial and Food Microbiology Lab.											
Scheme and	CR	L	Т	P									
Credits	2	0	0	4									
Pre-requisites (if any)	Nil			·									
Objectives	The obside	bjectiv s of ind	es of th ustrial a	nis cour nd food	rse are I micro	to provide hands-on training in biology processes.							
Outcomes	On completion of this course, studentsshouldbeableto:												
		. Acq	uaints	with V	arious	industrial and 1000							

products, their production techni	iques and
prevention of spoilage. This	course is
supplemented by fermentation know	ledge from
another paper in the same semester. S	Student get
trained to undertake a job in	food and
industries dealing with fermentatio	n. Besides
this, this course is coupled to an indu	ustrial visit
also.	

	РО 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	Р О 9	P O 10	PO 11	P O 12	PSO 1	PSO 2	PSO 3
CO 1	2	2	3	1	3	2	1	1	2	1	2	2	1	2	1
Avera ge	2	2	3	1	3	2	1	1	2	1	2	2	1	2	1

Experiment details

- 1. To determine the specific growth rate and generation time of a bacterium during submerged fermentations.
- 2. To compare glucoamy; as production by parent and mutant of thermphilic fungus Thermomucorindicae under submerged and SSF conditions.
- 3. To grow yeast (S. cerevisiae) and fungus (Rhizopus sp.) in artificial medium and to calculate the yield and productivity of the biomass produced.
- 4. To make wine from different juices by fermentation.
- 5. To compare glucoamylase production of free and immobilized sporangiospores of Thermomucorindicae.
- 6. To study microbiology of vegetables, fruits, milk and milk products.
- 7. To test the quality of milk.
- 8. To demonstrate production of curd and cheese.
- 9. To study production of wine from grape juice.
- 10. Restriction digestion analysis by agarose gel electrophoresis.
- 11. Restriction digestion analysis by polyacrylamide gel electrophoresis.
- 12. Isolation of plasmid DNA from minicultures.

Course code	MSMB-353								
Category	Applied Sciences								
Course title	Medical Microbiology Lab.								
Scheme and Credits	$ \begin{array}{c c} C \\ F \\ \hline P \\ \hline 2 \\ 0 \\ 0 \\ 0 \\ \end{array} $								
Pre-requisites (if any)	Nil								
Objectives	The objectives of this course are to provide hands-on training in basic experiments of Medical Microbiology.								
Outcomes	On completion of this course, students								

should be able to:															
						2	snouic	be a	ble to):					
							1.	Lear	n op	porti	unities	in	the b	oasic	
principles of medical microbiology															
	and infectious disease.														
2. Understand pathogenic															
								micro	oorga	nism	s and	the r	nechani	isms	
								by w	hich	they	caus	e dis	ease in	the	
								hum	an bo	dv	•••••	• • • • • •			
							2	Dovo	lon	uy. infor	motios	and	diagne	octio	
							5.		iop :		inatics		ulagin	ond	
								SKIIIS	, 1	nciua	ing	the	use	and	
interpretation of laboratory tests in															
								the d	iagno	osis o	f infec	tious	disease	es.	
4. Understand the importance of															
								patho	ogeni	c bac	teria i	n hur	nan dis	ease	
								with	resp	bect	to in	fectio	ons of	the	
								respi	rator	y t	ract,	gast	rointes	tinal	
								tract.	urii	nary	tract.	skir	n and	soft	
								tissue	e.	2					
	Р	DO	DO	DO	DO	DO	DO	DO	Р	Р	DO	Р	DCO	DCO	DEO
	0	PO 2	PO 3	4	FU 5	FU 6	PO 7	PU 8	0	0	PO 11	0	1	2	3
<u>CO 1</u>	1	2	2	1	2	2	1	1	9	10	2	12	1	2	2
CO1	2	3	1	1	1	2	1	2	1	2	-	2	1	2	1
CO 3	2	1	1	2	3	1	-	2	1	1	1	2	2	1	2
CO 4	1	1	2	1	2	2	1	2	1	2	2	2	1	2	1
Avera															
ge	1.8	1.8	1.8	1.3	2.3	1.8	0.8	1.8	1.3	1.5	1.3	2.0	1.3	1.8	1.5
Experin	nent o	letai	S												
1. S	lide A	Agglu	tinat	ion T	est:	RID									
2. T	ube A	Agglu	tinati	ionTe	st: (WIDA	AL Te	st)							
3. V	DRL	Test	tor s	syphi				-1!	1 4						
4 Study of Malaria Life Cycle and malarial testing															

- 5. Blood Agar Preparation and detection of Blood Microorganisms.
- 6. Study of normal microflora of skin
- Testing of antimicrobial activity of the skin on bacteria.
 Study of microbial flora of the infected wounds
- 9. Primary screening of enteric pathogen from gastro intestinal tract.
- 10. Primary screening of pathogen from urinary tract.

Course code	MSN	MSMB-381										
Category	App	Applied Sciences										
Course	Som	Sourin on										
title	Sem	mai										
Scheme	CR	L	Т	Р								
and	2	2 0 0 4										
Credits												

SEMESTER-IV

Course Code	Course / Title	L	Τ	Р	Credit
MSMB-481	Seminar	0	0	04	2
MSMB-491	Dissertation	0	0	24	12
	Total	0	0	28	14